Abstract

Parasitic helminths infect over a billion humans. To survive in the low oxygen environment of their hosts, these parasites use unusual anaerobic metabolism - this requires rhodoquinone (RQ), an electron carrier that is made by very few animal species. Crucially RQ is not made or used by any parasitic hosts and RQ synthesis is thus an ideal target for anthelmintics. However, little is known about how RQ is made and no drugs are known to block RQ synthesis. C.elegans makes RQ and can use RQ-dependent metabolic pathways - here, we use C.elegans genetics to show that tryptophan degradation via the kynurenine pathway is required to generate the key amine-containing precursors for RQ synthesis. We show that C.elegans requires RQ for survival in hypoxic conditions and, finally, we establish a high throughput assay for drugs that block RQ-dependent metabolism. This may drive the development of a new class of anthelmintic drugs. This study is a key first step in understanding how RQ is made in parasitic helminths.

Data availability

All data in manuscript and supporting files

Article and author information

Author details

  1. Samantha Del Borrello

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0117-0592
  2. Margot Lautens

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8503-9603
  3. Kathleen Dolan

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. June H Tan

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6597-3952
  5. Taylor Davie

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael R Schertzberg

    The Donnelly Centre, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Mark A Spensley

    The Donnelly Centre, University of Toronto, Toronto, Canada
    For correspondence
    maspensley@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6167-4461
  8. Amy A Caudy

    The Donnelly Centre, University of Toronto, Toronto, Canada
    For correspondence
    amy.caudy@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6307-8137
  9. Andrew G Fraser

    The Donnelly Centre, University of Toronto, Toronto, Canada
    For correspondence
    andyfraser.utoronto@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9939-6014

Funding

Canadian Institutes of Health Research (501584)

  • Andrew G Fraser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Phillip A Newmark, HHMI/Morgridge Institute for Research, University of Wisconsin-Madison, United States

Version history

  1. Received: May 2, 2019
  2. Accepted: June 22, 2019
  3. Accepted Manuscript published: June 24, 2019 (version 1)
  4. Version of Record published: July 24, 2019 (version 2)

Copyright

© 2019, Del Borrello et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,899
    views
  • 373
    downloads
  • 24
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samantha Del Borrello
  2. Margot Lautens
  3. Kathleen Dolan
  4. June H Tan
  5. Taylor Davie
  6. Michael R Schertzberg
  7. Mark A Spensley
  8. Amy A Caudy
  9. Andrew G Fraser
(2019)
Rhodoquinone biosynthesis in C.elegans requires precursors generated by the kynurenine pathway
eLife 8:e48165.
https://doi.org/10.7554/eLife.48165

Share this article

https://doi.org/10.7554/eLife.48165

Further reading

    1. Biochemistry and Chemical Biology
    Pattama Wiriyasermkul, Satomi Moriyama ... Shushi Nagamori
    Research Article

    Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.