A tissue-like platform for studying engineered quiescent human T-cells' interactions with dendritic cells

Abstract

Research in the field of human immunology is restricted by the lack of a system that reconstitutes the in-situ activation dynamics of quiescent human antigen-specific T-cells interacting with dendritic cells. Here we report a tissue-like system that recapitulates the dynamics of engineered primary human immune cell. Our approach facilitates real-time single cell manipulations, tracking of interactions and functional responses complemented by population-based measurements of cytokines, activation status and proliferation. As a proof of concept, we recapitulate immunological phenomenon such as CD4 help to CD8 T-cells through enhanced maturation of DCs and effect of PD-1 checkpoint blockades. In addition, we characterise unique dynamics of T-cell/DC interactions as a function of antigen affinity.

Data availability

No new gene datasets were generated during this study. Source data files have been provided for Figures 2, 3, and 4. The TCR sequences used have been published in the past in the literature (cited in the manuscript) and the modifications made are clearly stated in the tables in the manuscript. The constructs are available through a request to the corresponding authors of the previously published articles.

Article and author information

Author details

  1. Enas Abu Shah

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    For correspondence
    enas.abushah@path.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5033-8171
  2. Philippos Demetriou

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  3. Štefan Bálint

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4470-5881
  4. Viveka Mayya

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  5. Mikhail A Kutuzov

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Omer Dushek

    Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
    For correspondence
    omer.dushek@path.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5847-5226
  7. Michael L Dustin

    Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
    For correspondence
    michael.dustin@kennedy.ox.ac.uk
    Competing interests
    Michael L Dustin, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4983-6389

Funding

Wellcome Trust (100262Z/12/Z)

  • Michael L Dustin

Wellcome Trust (207537/Z/17/Z)

  • Omer Dushek

European Research Council (ERC-2014-AdG_670930)

  • Štefan Bálint
  • Viveka Mayya

Human Frontier Science Program (RGP0033/2015)

  • Michael L Dustin

UCB-Oxford

  • Enas Abu Shah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Shimon Sakaguchi, Osaka University, Japan

Ethics

Human subjects: This project has been approved by the Medical Sciences Inter-Divisional Research Ethics Committee of the University of Oxford REC 11/H0711/7 to cover the use of human blood products purchased from National Health Services Blood and Transplant service (NHS England).

Version history

  1. Received: May 6, 2019
  2. Accepted: September 24, 2019
  3. Accepted Manuscript published: September 25, 2019 (version 1)
  4. Version of Record published: December 12, 2019 (version 2)

Copyright

© 2019, Abu Shah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,755
    views
  • 490
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Enas Abu Shah
  2. Philippos Demetriou
  3. Štefan Bálint
  4. Viveka Mayya
  5. Mikhail A Kutuzov
  6. Omer Dushek
  7. Michael L Dustin
(2019)
A tissue-like platform for studying engineered quiescent human T-cells' interactions with dendritic cells
eLife 8:e48221.
https://doi.org/10.7554/eLife.48221

Share this article

https://doi.org/10.7554/eLife.48221

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Immunology and Inflammation
    2. Medicine
    Joanna C Porter, Jamie Inshaw ... Venizelos Papayannopoulos
    Research Article

    Background:

    Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin.

    Methods:

    Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors.

    Results:

    We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01–2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004).

    Conclusions:

    Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin.

    Funding:

    LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust).

    Clinical trial number:

    NCT04359654.