High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier

  1. Zhijie Chen
  2. Ronen Gabizon
  3. Aidan I Brown
  4. Antony Lee
  5. Aixin Song
  6. Cesar Diaz-Celis
  7. Craig D Kaplan
  8. Elena F Koslover
  9. Tingting Yao  Is a corresponding author
  10. Carlos Bustamante  Is a corresponding author
  1. University of California, Berkeley, United States
  2. University of California, San Diego, United States
  3. Colorado State University, United States
  4. University of Pittsburgh, United States

Abstract

Nucleosomes represent mechanical and energetic barriers that RNA Polymerase II (Pol II) must overcome during transcription. A high-resolution description of the barrier topography, its modulation by epigenetic modifications, and their effects on Pol II nucleosome crossing dynamics, is still missing. Here, we obtain topographic and transcriptional (Pol II residence time) maps of canonical, H2A.Z, and monoubiquitinated H2B (uH2B) nucleosomes at near base-pair resolution and accuracy. Pol II crossing dynamics are complex, displaying pauses at specific loci, backtracking, and nucleosome hopping between wrapped states. While H2A.Z widens the barrier, uH2B heightens it, and both modifications greatly lengthen Pol II crossing time. Using the dwell times of Pol II at each nucleosomal position we extract the energetics of the barrier. The orthogonal barrier modifications of H2A.Z and uH2B, and their effects on Pol II dynamics rationalize their observed enrichment in +1 nucleosomes and suggest a mechanism for selective control of gene expression.

Data availability

Matlab scripts for processing unzipping curves and hopping data has been deposited in github at https://github.com/lenafabr/dataprocessDNAunzippingRaw data is available from Dryad https://doi.org/10.5061/dryad.8sb6h8nFurther information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Carlos J. Bustamante (carlosb@berkeley.edu).

The following data sets were generated

Article and author information

Author details

  1. Zhijie Chen

    Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1376-5750
  2. Ronen Gabizon

    Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Aidan I Brown

    Department of Physics, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Antony Lee

    Department of Physics, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2193-5369
  5. Aixin Song

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Cesar Diaz-Celis

    Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Craig D Kaplan

    Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Elena F Koslover

    Department of Physics, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4139-9209
  9. Tingting Yao

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    For correspondence
    Tingting.Yao@Colostate.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Carlos Bustamante

    Institute for Quantitative Biosciences-QB3, University of California, Berkeley, Berkeley, United States
    For correspondence
    carlosb@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2970-0073

Funding

National Institute of General Medical Sciences (R01GM032543)

  • Carlos Bustamante

National Institute of General Medical Sciences (R01GM071552)

  • Carlos Bustamante

National Institute of General Medical Sciences (R01GM098401)

  • Tingting Yao

National Institute of General Medical Sciences (R01GM097260)

  • Craig D Kaplan

Basic Energy Sciences (Nanomachine Program under Contract DE-AC02-05CH11231)

  • Carlos Bustamante

Alfred P. Sloan Foundation (FG-2018-10394)

  • Elena F Koslover

Burroughs Wellcome Fund (Collaborative Research Travel Grant)

  • Tingting Yao

Howard Hughes Medical Institute

  • Carlos Bustamante

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Chen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,056
    views
  • 973
    downloads
  • 77
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhijie Chen
  2. Ronen Gabizon
  3. Aidan I Brown
  4. Antony Lee
  5. Aixin Song
  6. Cesar Diaz-Celis
  7. Craig D Kaplan
  8. Elena F Koslover
  9. Tingting Yao
  10. Carlos Bustamante
(2019)
High-resolution and high-accuracy topographic and transcriptional maps of the nucleosome barrier
eLife 8:e48281.
https://doi.org/10.7554/eLife.48281

Share this article

https://doi.org/10.7554/eLife.48281

Further reading

    1. Plant Biology
    2. Structural Biology and Molecular Biophysics
    Théo Le Moigne, Martina Santoni ... Julien Henri
    Research Article

    The Calvin-Benson-Bassham cycle (CBBC) performs carbon fixation in photosynthetic organisms. Among the eleven enzymes that participate in the pathway, sedoheptulose-1,7-bisphosphatase (SBPase) is expressed in photo-autotrophs and catalyzes the hydrolysis of sedoheptulose-1,7-bisphosphate (SBP) to sedoheptulose-7-phosphate (S7P). SBPase, along with nine other enzymes in the CBBC, contributes to the regeneration of ribulose-1,5-bisphosphate, the carbon-fixing co-substrate used by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The metabolic role of SBPase is restricted to the CBBC, and a recent study revealed that the three-dimensional structure of SBPase from the moss Physcomitrium patens was found to be similar to that of fructose-1,6-bisphosphatase (FBPase), an enzyme involved in both CBBC and neoglucogenesis. In this study we report the first structure of an SBPase from a chlorophyte, the model unicellular green microalga Chlamydomonas reinhardtii. By combining experimental and computational structural analyses, we describe the topology, conformations, and quaternary structure of Chlamydomonas reinhardtii SBPase (CrSBPase). We identify active site residues and locate sites of redox- and phospho-post-translational modifications that contribute to enzymatic functions. Finally, we observe that CrSBPase adopts distinct oligomeric states that may dynamically contribute to the control of its activity.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.