Complement and CD4+ T cells drive context-specific corneal sensory neuropathy

  1. Derek J Royer  Is a corresponding author
  2. Jose Echegaray-Mendez
  3. Liwen Lin
  4. Grzegorz B Gmyrek
  5. Rose Mathew
  6. Daniel R Saban
  7. Victor L Perez
  8. Dan Carr
  1. Duke University, United States
  2. University of Oklahoma Health Sciences Center, United States

Abstract

Whether complement dysregulation directly contributes to the pathogenesis of peripheral nervous system diseases, including sensory neuropathies, is unclear. We addressed this important question in a mouse model of ocular HSV-1 infection, where sensory nerve damage is a common clinical problem. Through genetic and pharmacologic targeting, we uncovered a central role for C3 in sensory nerve damage at the morphological and functional levels. Interestingly, CD4 T cells were central in facilitating this complement-mediated damage. This same C3/CD4 T cell axis triggered corneal sensory nerve damage in a mouse model of ocular graft-versus-host disease (GVHD). However, this was not the case in a T-dependent allergic eye disease (AED) model, suggesting that this inflammatory neuroimmune pathology is specific to certain disease etiologies. Collectively, these findings uncover a central role for complement in CD4 T cell-dependent corneal nerve damage in multiple disease settings and indicate the possibility for complement-targeted therapeutics to mitigate sensory neuropathies.

Data availability

Data generated during this study are included in the manuscript.

Article and author information

Author details

  1. Derek J Royer

    Department of Ophthalmology, Duke University, Durham, United States
    For correspondence
    Derek.Royer@Duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8476-1784
  2. Jose Echegaray-Mendez

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Liwen Lin

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Grzegorz B Gmyrek

    Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rose Mathew

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel R Saban

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Victor L Perez

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dan Carr

    Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (R01 EY021238)

  • Dan Carr

National Eye Institute (P30 EY021725)

  • Dan Carr

National Eye Institute (R01 EY021798)

  • Daniel R Saban

National Eye Institute (R01 EY024484)

  • Victor L Perez

National Eye Institute (P30 EY005722)

  • Daniel R Saban

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Research was performed in accordance with protocols approved by institutional care and use committees at the University of Oklahoma Health Sciences Center (Protocol number 160-014-NSI) and Duke University (Protocol numbers A061-18-03 and A034-18-01).

Copyright

© 2019, Royer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,799
    views
  • 235
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Derek J Royer
  2. Jose Echegaray-Mendez
  3. Liwen Lin
  4. Grzegorz B Gmyrek
  5. Rose Mathew
  6. Daniel R Saban
  7. Victor L Perez
  8. Dan Carr
(2019)
Complement and CD4+ T cells drive context-specific corneal sensory neuropathy
eLife 8:e48378.
https://doi.org/10.7554/eLife.48378

Share this article

https://doi.org/10.7554/eLife.48378

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Jing Sun, Desmond Choy ... Shahram Kordasti
    Tools and Resources

    Mass cytometry is a cutting-edge high-dimensional technology for profiling marker expression at the single-cell level, advancing clinical research in immune monitoring. Nevertheless, the vast data generated by cytometry by time-of-flight (CyTOF) poses a significant analytical challenge. To address this, we describe ImmCellTyper (https://github.com/JingAnyaSun/ImmCellTyper), a novel toolkit for CyTOF data analysis. This framework incorporates BinaryClust, an in-house developed semi-supervised clustering tool that automatically identifies main cell types. BinaryClust outperforms existing clustering tools in accuracy and speed, as shown in benchmarks with two datasets of approximately 4 million cells, matching the precision of manual gating by human experts. Furthermore, ImmCellTyper offers various visualisation and analytical tools, spanning from quality control to differential analysis, tailored to users’ specific needs for a comprehensive CyTOF data analysis solution. The workflow includes five key steps: (1) batch effect evaluation and correction, (2) data quality control and pre-processing, (3) main cell lineage characterisation and quantification, (4) in-depth investigation of specific cell types; and (5) differential analysis of cell abundance and functional marker expression across study groups. Overall, ImmCellTyper combines expert biological knowledge in a semi-supervised approach to accurately deconvolute well-defined main cell lineages, while maintaining the potential of unsupervised methods to discover novel cell subsets, thus facilitating high-dimensional immune profiling.

    1. Immunology and Inflammation
    Fani Roumelioti, Christos Tzaferis ... George Kollias
    Research Article

    miRNAs constitute fine-tuners of gene expression and are implicated in a variety of diseases spanning from inflammation to cancer. miRNA expression is deregulated in rheumatoid arthritis (RA); however, their specific role in key arthritogenic cells such as the synovial fibroblast (SF) remains elusive. Previous studies have shown that Mir221/222 expression is upregulated in RA SFs. Here, we demonstrate that TNF and IL-1β but not IFN-γ activated Mir221/222 gene expression in murine SFs. SF-specific overexpression of Mir221/222 in huTNFtg mice led to further expansion of SFs and disease exacerbation, while its total ablation led to reduced SF expansion and attenuated disease. Mir221/222 overexpression altered the SF transcriptional profile igniting pathways involved in cell cycle and ECM (extracellular matrix) regulation. Validation of targets of Mir221/222 revealed cell cycle inhibitors Cdkn1b and Cdkn1c, as well as the epigenetic regulator Smarca1. Single-cell ATAC-seq data analysis revealed increased Mir221/222 gene activity in pathogenic SF subclusters and transcriptional regulation by Rela, Relb, Junb, Bach1, and Nfe2l2. Our results establish an SF-specific pathogenic role of Mir221/222 in arthritis and suggest that its therapeutic targeting in specific subpopulations could lead to novel fibroblast-targeted therapies.