1. Immunology and Inflammation
  2. Microbiology and Infectious Disease
Download icon

Complement and CD4+ T cells drive context-specific corneal sensory neuropathy

  1. Derek J Royer  Is a corresponding author
  2. Jose Echegaray-Mendez
  3. Liwen Lin
  4. Grzegorz B Gmyrek
  5. Rose Mathew
  6. Daniel R Saban
  7. Victor L Perez
  8. Dan Carr
  1. Duke University, United States
  2. University of Oklahoma Health Sciences Center, United States
Research Article
  • Cited 0
  • Views 335
  • Annotations
Cite this article as: eLife 2019;8:e48378 doi: 10.7554/eLife.48378

Abstract

Whether complement dysregulation directly contributes to the pathogenesis of peripheral nervous system diseases, including sensory neuropathies, is unclear. We addressed this important question in a mouse model of ocular HSV-1 infection, where sensory nerve damage is a common clinical problem. Through genetic and pharmacologic targeting, we uncovered a central role for C3 in sensory nerve damage at the morphological and functional levels. Interestingly, CD4 T cells were central in facilitating this complement-mediated damage. This same C3/CD4 T cell axis triggered corneal sensory nerve damage in a mouse model of ocular graft-versus-host disease (GVHD). However, this was not the case in a T-dependent allergic eye disease (AED) model, suggesting that this inflammatory neuroimmune pathology is specific to certain disease etiologies. Collectively, these findings uncover a central role for complement in CD4 T cell-dependent corneal nerve damage in multiple disease settings and indicate the possibility for complement-targeted therapeutics to mitigate sensory neuropathies.

Article and author information

Author details

  1. Derek J Royer

    Department of Ophthalmology, Duke University, Durham, United States
    For correspondence
    Derek.Royer@Duke.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8476-1784
  2. Jose Echegaray-Mendez

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Liwen Lin

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Grzegorz B Gmyrek

    Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Rose Mathew

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel R Saban

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Victor L Perez

    Department of Ophthalmology, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dan Carr

    Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Eye Institute (R01 EY021238)

  • Dan Carr

National Eye Institute (P30 EY021725)

  • Dan Carr

National Eye Institute (R01 EY021798)

  • Daniel R Saban

National Eye Institute (R01 EY024484)

  • Victor L Perez

National Eye Institute (P30 EY005722)

  • Daniel R Saban

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Research was performed in accordance with protocols approved by institutional care and use committees at the University of Oklahoma Health Sciences Center (Protocol number 160-014-NSI) and Duke University (Protocol numbers A061-18-03 and A034-18-01).

Reviewing Editor

  1. Isaac M Chiu, Harvard Medical School, United States

Publication history

  1. Received: May 10, 2019
  2. Accepted: August 15, 2019
  3. Accepted Manuscript published: August 15, 2019 (version 1)

Copyright

© 2019, Royer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 335
    Page views
  • 74
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    David G Saliba et al.
    Research Article Updated
    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Kristian Davidsen et al.
    Tools and Resources