Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex

  1. Emiko Uchikawa
  2. Eunhee Choi  Is a corresponding author
  3. Guijun Shang
  4. Hongtao Yu  Is a corresponding author
  5. Xiao-chen Bai  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States

Abstract

Insulin signaling controls metabolic homeostasis. Here, we report the cryo-EM structure of full-length insulin receptor (IR) and insulin complex in the active state. This structure unexpectedly reveals that maximally 4 insulins can bind the 'T'-shaped IR dimer at 4 distinct sites related by 2-fold symmetry. Insulins 1 and 1' bind to sites 1 and 1', formed by L1 of one IR protomer and α-CT and FnIII-1 of the other. Insulins 2 and 2' bind to sites 2 and 2' on FnIII-1 of each protomer. Mutagenesis and cellular assays show that both sites 1 and 2 are required for optimal insulin binding and IR activation. We further identify a homotypic FnIII-2-FnIII-2 interaction in mediating the dimerization of membrane proximal domains in the active IR dimer. Our results indicate that binding of multiple insulins at two distinct types of sites disrupts the autoinhibited apo-IR dimer and stabilizes the active dimer.

Data availability

Cryo-EM maps and the corresponding bulit models of insulin receptor/insulin complex have been deposited in EMDB and PDB under the accession codes EMD-20522/EMD-20523 and 6PXV/6PXW, respectively.All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure2, Figure 3, Figure 4, Figure1-Supplement 1, Figure3-Supplement 2 and Figure3-Supplement 3

The following data sets were generated

Article and author information

Author details

  1. Emiko Uchikawa

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Eunhee Choi

    Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Eunhee.Choi@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3286-6477
  3. Guijun Shang

    Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0187-7934
  4. Hongtao Yu

    Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    hongtao.yu@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8861-049X
  5. Xiao-chen Bai

    Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Xiaochen.Bai@UTSouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4234-5686

Funding

Cancer Preventation and Research Institute of Texas (RR160082)

  • Xiao-chen Bai

Welch Foundation (I-1944)

  • Xiao-chen Bai

Cancer Preventation and Research Institute of Texas (RP120717-P2)

  • Hongtao Yu

Cancer Preventation and Research Institute of Texas (RP160667-P2)

  • Hongtao Yu

Howard Hughes Medical Institute

  • Hongtao Yu

Welch Foundation (I-1441)

  • Hongtao Yu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Axel T Brunger, Stanford University, United States

Version history

  1. Received: May 21, 2019
  2. Accepted: August 21, 2019
  3. Accepted Manuscript published: August 22, 2019 (version 1)
  4. Version of Record published: September 3, 2019 (version 2)
  5. Version of Record updated: September 9, 2019 (version 3)

Copyright

© 2019, Uchikawa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,799
    views
  • 1,948
    downloads
  • 120
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emiko Uchikawa
  2. Eunhee Choi
  3. Guijun Shang
  4. Hongtao Yu
  5. Xiao-chen Bai
(2019)
Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex
eLife 8:e48630.
https://doi.org/10.7554/eLife.48630

Share this article

https://doi.org/10.7554/eLife.48630

Further reading

    1. Structural Biology and Molecular Biophysics
    Katarzyna Drożdżyk, Martina Peter, Raimund Dutzler
    Research Advance

    The CALHM proteins constitute a family of large pore channels that contains six closely related paralogs in humans. Two family members, CALHM1 and 3, have been associated with the release of ATP during taste sensation. Both proteins form heteromeric channels that activate at positive potential and decreased extracellular Ca2+ concentration. Although the structures of several family members displayed large oligomeric organizations of different size, their function has in most cases remained elusive. Our previous study has identified the paralogs CALHM2, 4 and, 6 to be highly expressed in the placenta and defined their structural properties as membrane proteins exhibiting features of large pore channels with unknown activation properties (Drożdżyk et al., 2020). Here, we investigated whether these placental paralogs would form heteromers and characterized heteromeric complexes consisting of CALHM2 and CALHM4 subunits using specific binders as fiducial markers. Both proteins assemble with different stoichiometries with the largest population containing CALHM2 as the predominant component. In these oligomers, the subunits segregate and reside in their preferred conformation found in homomeric channels. Our study has thus revealed the properties that govern the formation of CALHM heteromers in a process of potential relevance in a cellular context.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Aaron JO Lewis, Frank Zhong ... Ramanujan S Hegde
    Research Article

    The protein translocon at the endoplasmic reticulum comprises the Sec61 translocation channel and numerous accessory factors that collectively facilitate the biogenesis of secretory and membrane proteins. Here, we leveraged recent advances in cryo-electron microscopy (cryo-EM) and structure prediction to derive insights into several novel configurations of the ribosome-translocon complex. We show how a transmembrane domain (TMD) in a looped configuration passes through the Sec61 lateral gate during membrane insertion; how a nascent chain can bind and constrain the conformation of ribosomal protein uL22; and how the translocon-associated protein (TRAP) complex can adjust its position during different stages of protein biogenesis. Most unexpectedly, we find that a large proportion of translocon complexes contains RAMP4 intercalated into Sec61’s lateral gate, widening Sec61’s central pore and contributing to its hydrophilic interior. These structures lead to mechanistic hypotheses for translocon function and highlight a remarkably plastic machinery whose conformations and composition adjust dynamically to its diverse range of substrates.