Modulating FOXO3 transcriptional activity by small, DBD-binding molecules

  1. Judith Hagenbuchner
  2. Veronika Obsilova
  3. Teresa Kaserer
  4. Nora Kaiser
  5. Bettina Rass
  6. Katarina Psenakova
  7. Vojtech Docekal
  8. Miroslava Alblova
  9. Klara Kohoutova
  10. Daniela Schuster
  11. Tatsiana Aneichyk
  12. Jan Vesely
  13. Petra Obexer
  14. Tomas Obsil  Is a corresponding author
  15. Michael J Ausserlechner  Is a corresponding author
  1. Medical University Innsbruck, Austria
  2. The Czech Academy of Sciences, Czech Republic
  3. University of Innsbruck, Austria
  4. Charles University, Czech Republic
  5. Charles University, Afghanistan

Abstract

FOXO transcription factors are critical regulators of cell homeostasis and steer cell death, differentiation and longevity in mammalian cells. By combined pharmacophore-modelling-based in silico and fluorescence polarization-based screening we identified small molecules that physically interact with the DNA-binding domain (DBD) of FOXO3 and modulate the FOXO3 transcriptional program in human cells. The mode of interaction between compounds and the FOXO3-DBD was assessed via NMR spectroscopy and docking studies. We demonstrate that compounds S9 and its oxalate salt S9OX interfere with FOXO3 target promoter binding, gene transcription and modulate the physiologic program activated by FOXO3 in cancer cells. These small molecules prove the druggability of the FOXO-DBD and provide a structural basis for modulating these important homeostasis regulators in normal and malignant cells.

Data availability

All data generated or analyzed during this study are included in manuscript and supporting files.

Article and author information

Author details

  1. Judith Hagenbuchner

    Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  2. Veronika Obsilova

    Department of Structural Biology of Signaling Proteins, The Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4887-0323
  3. Teresa Kaserer

    Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Nora Kaiser

    Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Bettina Rass

    Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Katarina Psenakova

    Department of Structural Biology of Signaling Proteins, The Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8877-6599
  7. Vojtech Docekal

    Department of Organic Chemistry, Charles University, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  8. Miroslava Alblova

    Department of Structural Biology of Signaling Proteins, The Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  9. Klara Kohoutova

    Department of Structural Biology of Signaling Proteins, The Czech Academy of Sciences, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  10. Daniela Schuster

    Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Tatsiana Aneichyk

    Division of Molecular Pathophysiology, Medical University Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  12. Jan Vesely

    Department of Organic Chemistry, Charles University, Prague, Afghanistan
    Competing interests
    The authors declare that no competing interests exist.
  13. Petra Obexer

    Department of Pediatrics II, Medical University Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  14. Tomas Obsil

    Department of Structural Biology of Signaling Proteins, The Czech Academy of Sciences, Prague, Czech Republic
    For correspondence
    obsil@natur.cuni.cz
    Competing interests
    The authors declare that no competing interests exist.
  15. Michael J Ausserlechner

    Department of Pediatrics I, Medical University Innsbruck, Innsbruck, Austria
    For correspondence
    michael.j.ausserlechner@i-med.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1015-2302

Funding

Austrian Science Fund (I3089-B28)

  • Judith Hagenbuchner
  • Veronika Obsilova
  • Tomas Obsil
  • Michael J Ausserlechner

Grantová Agentura České Republiky (17-33854L)

  • Veronika Obsilova
  • Tomas Obsil

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Xavier Darzacq, University of California, Berkeley, United States

Version history

  1. Received: May 29, 2019
  2. Accepted: December 1, 2019
  3. Accepted Manuscript published: December 2, 2019 (version 1)
  4. Accepted Manuscript updated: December 4, 2019 (version 2)
  5. Version of Record published: December 18, 2019 (version 3)
  6. Version of Record updated: January 15, 2020 (version 4)

Copyright

© 2019, Hagenbuchner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,945
    Page views
  • 453
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Judith Hagenbuchner
  2. Veronika Obsilova
  3. Teresa Kaserer
  4. Nora Kaiser
  5. Bettina Rass
  6. Katarina Psenakova
  7. Vojtech Docekal
  8. Miroslava Alblova
  9. Klara Kohoutova
  10. Daniela Schuster
  11. Tatsiana Aneichyk
  12. Jan Vesely
  13. Petra Obexer
  14. Tomas Obsil
  15. Michael J Ausserlechner
(2019)
Modulating FOXO3 transcriptional activity by small, DBD-binding molecules
eLife 8:e48876.
https://doi.org/10.7554/eLife.48876

Share this article

https://doi.org/10.7554/eLife.48876

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.