Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block

  1. Jakub Tomek  Is a corresponding author
  2. Alfonso Bueno-Orovio
  3. Elisa Passini
  4. Xin Zhou
  5. Ana Minchole
  6. Oliver Britton
  7. Chiara Bartolucci
  8. Stefano Severi
  9. Alvin Shrier
  10. Laszlo Virag
  11. Andras Varro
  12. Blanca Rodriguez  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Bologna, Italy
  3. McGill University, Canada
  4. University of Szeged, Hungary

Abstract

Human-based modelling and simulations are becoming ubiquitous in biomedical science due to their ability to augment experimental and clinical investigations. Cardiac electrophysiology is one of the most advanced areas, with cardiac modelling and simulation being considered for virtual testing of pharmacological therapies and medical devices. Current models present inconsistencies with experimental data, which limit further progress. In this study, we present the design, development, calibration and independent validation of a human-based ventricular model (ToR-ORd) for simulations of electrophysiology and excitation-contraction coupling, from ionic to whole-organ dynamics, including the electrocardiogram. Validation based on substantial multiscale simulations supports the credibility of the ToR-ORd model under healthy and key disease conditions, as well as drug blockade. In addition, the process uncovers new theoretical insights into the biophysical properties of the L-type calcium current, which are critical for sodium and calcium dynamics. These insights enable the reformulation of L-type calcium current, as well as replacement of the hERG current model.

Data availability

No new experimental data were created. However, codes for simulations are available at https://github.com/jtmff/torord.

Article and author information

Author details

  1. Jakub Tomek

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    For correspondence
    jakub.tomek@dpag.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0157-4386
  2. Alfonso Bueno-Orovio

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Elisa Passini

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Xin Zhou

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Ana Minchole

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Oliver Britton

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Chiara Bartolucci

    Department of Electrical, Electronic, and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefano Severi

    Department of Electrical, Electronic, and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4306-8294
  9. Alvin Shrier

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Laszlo Virag

    Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  11. Andras Varro

    Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  12. Blanca Rodriguez

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    For correspondence
    Blanca.Rodriguez@cs.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (100246/Z/12/Z)

  • Blanca Rodriguez

Amazon Web Services (Machine learning research award)

  • Blanca Rodriguez

Wellcome (214290/Z/18/Z)

  • Blanca Rodriguez

British Heart Foundation (FS/17/22/32644)

  • Alfonso Bueno-Orovio

European Commission (675451)

  • Blanca Rodriguez

National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/P001076/1)

  • Blanca Rodriguez

TransQST (116030)

  • Blanca Rodriguez

BHF Centre of Research Excellence, Oxford (RE/13/1/30181)

  • Blanca Rodriguez

UK National Supercomputing (Archer RAP award (322 00180))

  • Blanca Rodriguez

UK National Supercomputing (PRACE (2017174226))

  • Blanca Rodriguez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Tomek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,996
    views
  • 1,008
    downloads
  • 157
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jakub Tomek
  2. Alfonso Bueno-Orovio
  3. Elisa Passini
  4. Xin Zhou
  5. Ana Minchole
  6. Oliver Britton
  7. Chiara Bartolucci
  8. Stefano Severi
  9. Alvin Shrier
  10. Laszlo Virag
  11. Andras Varro
  12. Blanca Rodriguez
(2019)
Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block
eLife 8:e48890.
https://doi.org/10.7554/eLife.48890

Share this article

https://doi.org/10.7554/eLife.48890

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Liyi Wang, Shiqi Liu ... Tizhong Shan
    Research Article

    Conjugated linoleic acids (CLAs) can serve as a nutritional intervention to regulate quality, function, and fat infiltration in skeletal muscles, but the specific cytological mechanisms remain unknown. Here, we applied single-nucleus RNA-sequencing (snRNA-seq) to characterize the cytological mechanism of CLAs regulates fat infiltration in skeletal muscles based on pig models. We investigated the regulatory effects of CLAs on cell populations and molecular characteristics in pig muscles and found CLAs could promote the transformation of fast glycolytic myofibers into slow oxidative myofibers. We also observed three subpopulations including SCD+/DGAT2+, FABP5+/SIAH1+, and PDE4D+/PDE7B+ subclusters in adipocytes and CLAs could increase the percentage of SCD+/DGAT2+ adipocytes. RNA velocity analysis showed FABP5+/SIAH1+ and PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ adipocytes. We further verified the differentiated trajectory of mature adipocytes and identified PDE4D+/PDE7B+ adipocytes could differentiate into SCD+/DGAT2+ and FABP5+/SIAH1+ adipocytes by using high intramuscular fat (IMF) content Laiwu pig models. The cell-cell communication analysis identified the interaction network between adipocytes and other subclusters such as fibro/adipogenic progenitors (FAPs). Pseudotemporal trajectory analysis and RNA velocity analysis also showed FAPs could differentiate into PDE4D+/PDE7B+ preadipocytes and we discovered the differentiated trajectory of preadipocytes into mature adipocytes. Besides, we found CLAs could promote FAPs differentiate into SCD+/DGAT2+ adipocytes via inhibiting c-Jun N-terminal kinase (JNK) signaling pathway in vitro. This study provides a foundation for regulating fat infiltration in skeletal muscles by using nutritional strategies and provides potential opportunities to serve pig as an animal model to study human fat infiltrated diseases.

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).