Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block

  1. Jakub Tomek  Is a corresponding author
  2. Alfonso Bueno-Orovio
  3. Elisa Passini
  4. Xin Zhou
  5. Ana Minchole
  6. Oliver Britton
  7. Chiara Bartolucci
  8. Stefano Severi
  9. Alvin Shrier
  10. Laszlo Virag
  11. Andras Varro
  12. Blanca Rodriguez  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Bologna, Italy
  3. McGill University, Canada
  4. University of Szeged, Hungary

Abstract

Human-based modelling and simulations are becoming ubiquitous in biomedical science due to their ability to augment experimental and clinical investigations. Cardiac electrophysiology is one of the most advanced areas, with cardiac modelling and simulation being considered for virtual testing of pharmacological therapies and medical devices. Current models present inconsistencies with experimental data, which limit further progress. In this study, we present the design, development, calibration and independent validation of a human-based ventricular model (ToR-ORd) for simulations of electrophysiology and excitation-contraction coupling, from ionic to whole-organ dynamics, including the electrocardiogram. Validation based on substantial multiscale simulations supports the credibility of the ToR-ORd model under healthy and key disease conditions, as well as drug blockade. In addition, the process uncovers new theoretical insights into the biophysical properties of the L-type calcium current, which are critical for sodium and calcium dynamics. These insights enable the reformulation of L-type calcium current, as well as replacement of the hERG current model.

Data availability

No new experimental data were created. However, codes for simulations are available at https://github.com/jtmff/torord.

Article and author information

Author details

  1. Jakub Tomek

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    For correspondence
    jakub.tomek.mff@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0157-4386
  2. Alfonso Bueno-Orovio

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Elisa Passini

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Xin Zhou

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Ana Minchole

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Oliver Britton

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Chiara Bartolucci

    Department of Electrical, Electronic, and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefano Severi

    Department of Electrical, Electronic, and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4306-8294
  9. Alvin Shrier

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Laszlo Virag

    Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  11. Andras Varro

    Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  12. Blanca Rodriguez

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    For correspondence
    Blanca.Rodriguez@cs.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (100246/Z/12/Z)

  • Blanca Rodriguez

Amazon Web Services (Machine learning research award)

  • Blanca Rodriguez

Wellcome (214290/Z/18/Z)

  • Blanca Rodriguez

British Heart Foundation (FS/17/22/32644)

  • Alfonso Bueno-Orovio

European Commission (675451)

  • Blanca Rodriguez

National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/P001076/1)

  • Blanca Rodriguez

TransQST (116030)

  • Blanca Rodriguez

BHF Centre of Research Excellence, Oxford (RE/13/1/30181)

  • Blanca Rodriguez

UK National Supercomputing (Archer RAP award (322 00180))

  • Blanca Rodriguez

UK National Supercomputing (PRACE (2017174226))

  • Blanca Rodriguez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. José D Faraldo-Gómez, National Heart, Lung and Blood Institute, National Institutes of Health, United States

Version history

  1. Received: May 29, 2019
  2. Accepted: December 18, 2019
  3. Accepted Manuscript published: December 23, 2019 (version 1)
  4. Accepted Manuscript updated: December 24, 2019 (version 2)
  5. Version of Record published: January 20, 2020 (version 3)
  6. Version of Record updated: May 13, 2020 (version 4)

Copyright

© 2019, Tomek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,547
    Page views
  • 852
    Downloads
  • 108
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jakub Tomek
  2. Alfonso Bueno-Orovio
  3. Elisa Passini
  4. Xin Zhou
  5. Ana Minchole
  6. Oliver Britton
  7. Chiara Bartolucci
  8. Stefano Severi
  9. Alvin Shrier
  10. Laszlo Virag
  11. Andras Varro
  12. Blanca Rodriguez
(2019)
Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block
eLife 8:e48890.
https://doi.org/10.7554/eLife.48890

Share this article

https://doi.org/10.7554/eLife.48890

Further reading

    1. Cell Biology
    Zeina Salloum, Kristin Dauner ... Xiaohui Zha
    Research Article

    Stains are known to be anti-inflammatory, but the mechanism remains poorly understood. Here we show that macrophages, either treated with statin in vitro or from statin-treated mice, have reduced cholesterol levels and higher expression of Jmjd3, a H3K27me3 demethylase. We provide evidence that lowering cholesterol levels in macrophages suppresses the ATP synthase in the inner mitochondrial membrane (IMM) and changes the proton gradient in the mitochondria. This activates NFkB and Jmjd3 expression to remove the repressive marker H3K27me3. Accordingly, the epigenome is altered by the cholesterol reduction. When subsequently challenged by the inflammatory stimulus LPS (M1), both macrophages treated with statins in vitro or isolated from statin-treated mice in vivo, express lower levels pro-inflammatory cytokines than controls, while augmenting anti-inflammatory Il10 expression. On the other hand, when macrophages are alternatively activated by IL4 (M2), statins promote the expression of Arg1, Ym1, and Mrc1. The enhanced expression is correlated with the statin-induced removal of H3K27me3 from these genes prior to activation. In addition, Jmjd3 and its demethylase activity are necessary for cholesterol to modulate both M1 and M2 activation. We conclude that upregulation of Jmjd3 is a key event for the anti-inflammatory function of statins on macrophages.

    1. Cell Biology
    2. Computational and Systems Biology
    Thomas Grandits, Christoph M Augustin ... Alexander Jung
    Research Article

    Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.