Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block

  1. Jakub Tomek  Is a corresponding author
  2. Alfonso Bueno-Orovio
  3. Elisa Passini
  4. Xin Zhou
  5. Ana Minchole
  6. Oliver Britton
  7. Chiara Bartolucci
  8. Stefano Severi
  9. Alvin Shrier
  10. Laszlo Virag
  11. Andras Varro
  12. Blanca Rodriguez  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. University of Bologna, Italy
  3. McGill University, Canada
  4. University of Szeged, Hungary

Abstract

Human-based modelling and simulations are becoming ubiquitous in biomedical science due to their ability to augment experimental and clinical investigations. Cardiac electrophysiology is one of the most advanced areas, with cardiac modelling and simulation being considered for virtual testing of pharmacological therapies and medical devices. Current models present inconsistencies with experimental data, which limit further progress. In this study, we present the design, development, calibration and independent validation of a human-based ventricular model (ToR-ORd) for simulations of electrophysiology and excitation-contraction coupling, from ionic to whole-organ dynamics, including the electrocardiogram. Validation based on substantial multiscale simulations supports the credibility of the ToR-ORd model under healthy and key disease conditions, as well as drug blockade. In addition, the process uncovers new theoretical insights into the biophysical properties of the L-type calcium current, which are critical for sodium and calcium dynamics. These insights enable the reformulation of L-type calcium current, as well as replacement of the hERG current model.

Data availability

No new experimental data were created. However, codes for simulations are available at https://github.com/jtmff/torord.

Article and author information

Author details

  1. Jakub Tomek

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    For correspondence
    jakub.tomek.mff@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0157-4386
  2. Alfonso Bueno-Orovio

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Elisa Passini

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Xin Zhou

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Ana Minchole

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Oliver Britton

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Chiara Bartolucci

    Department of Electrical, Electronic, and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefano Severi

    Department of Electrical, Electronic, and Information Engineering 'Guglielmo Marconi', University of Bologna, Bologna, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4306-8294
  9. Alvin Shrier

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Laszlo Virag

    Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  11. Andras Varro

    Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  12. Blanca Rodriguez

    Department of Computer Science, University of Oxford, Oxford, United Kingdom
    For correspondence
    Blanca.Rodriguez@cs.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.

Funding

Wellcome (100246/Z/12/Z)

  • Blanca Rodriguez

Amazon Web Services (Machine learning research award)

  • Blanca Rodriguez

Wellcome (214290/Z/18/Z)

  • Blanca Rodriguez

British Heart Foundation (FS/17/22/32644)

  • Alfonso Bueno-Orovio

European Commission (675451)

  • Blanca Rodriguez

National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC/P001076/1)

  • Blanca Rodriguez

TransQST (116030)

  • Blanca Rodriguez

BHF Centre of Research Excellence, Oxford (RE/13/1/30181)

  • Blanca Rodriguez

UK National Supercomputing (Archer RAP award (322 00180))

  • Blanca Rodriguez

UK National Supercomputing (PRACE (2017174226))

  • Blanca Rodriguez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Tomek et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,051
    views
  • 1,014
    downloads
  • 163
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jakub Tomek
  2. Alfonso Bueno-Orovio
  3. Elisa Passini
  4. Xin Zhou
  5. Ana Minchole
  6. Oliver Britton
  7. Chiara Bartolucci
  8. Stefano Severi
  9. Alvin Shrier
  10. Laszlo Virag
  11. Andras Varro
  12. Blanca Rodriguez
(2019)
Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block
eLife 8:e48890.
https://doi.org/10.7554/eLife.48890

Share this article

https://doi.org/10.7554/eLife.48890

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Cell Biology
    2. Neuroscience
    Vibhavari Aysha Bansal, Jia Min Tan ... Toh Hean Ch'ng
    Research Article

    The emergence of Aβ pathology is one of the hallmarks of Alzheimer’s disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis – a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.