Formin-2 drives polymerisation of actin filaments enabling segregation of apicoplasts and cytokinesis in Plasmodium falciparum
Abstract
Plasmodium falciparum actin, apart from its role in erythrocyte invasion, is implicated in endocytosis, cytokinesis and inheritance of the chloroplast-like organelle - the apicoplast. However, the inability to visualise filamentous actin (F-actin) dynamics, a limitation we recently overcame for Toxoplasma (Periz et al, 2017), restricted characterisation of both F-actin and actin regulatory proteins. Here, we expressed and validated actin-binding chromobodies as F-actin-sensors in Plasmodium falciparum and characterised in-vivo actin dynamics. F-actin could be chemically modulated, and genetically disrupted upon conditionally deleting actin-1. In a comparative approach, we demonstrate that Formin-2, a predicted nucleator of F-actin, is responsible for apicoplast inheritance in both Plasmodium and Toxoplasma, and additionally mediates efficient cytokinesis in Plasmodium. Finally, time-averaged local intensity measurements of F-actin in Toxoplasma conditional mutants revealed molecular determinants of spatiotemporally regulated F-actin flow. Together, our data indicate that Formin-2 is the primary F-actin nucleator during apicomplexan intracellular growth, mediating multiple essential functions.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Proteomes of interest (Supplementary File 2) were downloaded from the UniProt-KB website (www.uniprot.org).
Article and author information
Author details
Funding
H2020 Excellent Science (ERC-2012-StG 309255-EndoTox)
- Markus Meissner
Wellcome (Wellcome Senior Fellowship 103875/Z/14/Z)
- Markus Meissner
Horizon 2020 Framework Programme (LMU Fellowship H2020-MSCA-COFUND-2016-754388)
- Sujaan Das
Wellcome (085349 - Core funding for the WCMP)
- Johannes Felix Stortz
- Mario Del Rosario
- Jonathan M Wilkes
- Markus Meissner
- Sujaan Das
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Felix Stortz et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,203
- views
-
- 400
- downloads
-
- 38
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Microbiology and Infectious Disease
eLife has recently published a wide range of papers on malaria, covering a diversity of themes including parasite biology, epidemiology, immunology, drugs and vaccines.
-
- Cell Biology
- Physics of Living Systems
Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental works suggest a centrosome growth model involving autocatalytic assembly of the pericentriolar material. Here, we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.