The regulation of oocyte maturation and ovulation in the closest sister group of vertebrates

  1. Shin Matsubara
  2. Akira Shiraishi
  3. Tomohiro Osugi
  4. Tsuyoshi Kawada
  5. Honoo Satake  Is a corresponding author
  1. Suntory Foundation for Life Sciences, Japan

Abstract

Ascidians are the closest living relatives of vertebrates, and their study is important for understanding the evolutionary processes of oocyte maturation and ovulation. In this study, we first examined the ovulation of Ciona intestinalis Type A by monitoring follicle rupture in vitro, identifying a novel mechanism of neuropeptidergic regulation of oocyte maturation and ovulation. Ciona vasopressin family peptide (CiVP) directly upregulated the phosphorylation of extracellular signal-regulated kinase (CiErk1/2) via its receptor. CiVP ultimately activated a maturation-promoting factor, leading to oocyte maturation via germinal vesicle breakdown. CiErk1/2 also induced expression of matrix metalloproteinase (CiMMP2/9/13) in the oocyte, resulting in collagen degradation in the outer follicular cell layer and liberation of fertile oocytes from the ovary. This is the first demonstration of essential pathways regulating oocyte maturation and ovulation in ascidians and will facilitate investigations of the evolutionary process of peptidergic regulation of oocyte maturation and ovulation throughout the phylum Chordata.

Data availability

All data generated or analyzed in this study are included in the manuscript and supporting files. Accession numbers of RNA-seq data in this study are described in Table 1 and Table 2. All RNA seq-data are provided in Supplementary file 1 and 4.

Article and author information

Author details

  1. Shin Matsubara

    Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Akira Shiraishi

    Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Tomohiro Osugi

    Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6987-9576
  4. Tsuyoshi Kawada

    Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Honoo Satake

    Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
    For correspondence
    satake@sunbor.or.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1165-3624

Funding

Japan Society for the Promotion of Science (JP16K07430)

  • Honoo Satake

Japan Society for the Promotion of Science (JP16K18581)

  • Shin Matsubara

Japan Society for the Promotion of Science (JP17J10624)

  • Shin Matsubara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Matsubara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,060
    views
  • 362
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shin Matsubara
  2. Akira Shiraishi
  3. Tomohiro Osugi
  4. Tsuyoshi Kawada
  5. Honoo Satake
(2019)
The regulation of oocyte maturation and ovulation in the closest sister group of vertebrates
eLife 8:e49062.
https://doi.org/10.7554/eLife.49062

Share this article

https://doi.org/10.7554/eLife.49062

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.