The regulation of oocyte maturation and ovulation in the closest sister group of vertebrates

  1. Shin Matsubara
  2. Akira Shiraishi
  3. Tomohiro Osugi
  4. Tsuyoshi Kawada
  5. Honoo Satake  Is a corresponding author
  1. Suntory Foundation for Life Sciences, Japan

Abstract

Ascidians are the closest living relatives of vertebrates, and their study is important for understanding the evolutionary processes of oocyte maturation and ovulation. In this study, we first examined the ovulation of Ciona intestinalis Type A by monitoring follicle rupture in vitro, identifying a novel mechanism of neuropeptidergic regulation of oocyte maturation and ovulation. Ciona vasopressin family peptide (CiVP) directly upregulated the phosphorylation of extracellular signal-regulated kinase (CiErk1/2) via its receptor. CiVP ultimately activated a maturation-promoting factor, leading to oocyte maturation via germinal vesicle breakdown. CiErk1/2 also induced expression of matrix metalloproteinase (CiMMP2/9/13) in the oocyte, resulting in collagen degradation in the outer follicular cell layer and liberation of fertile oocytes from the ovary. This is the first demonstration of essential pathways regulating oocyte maturation and ovulation in ascidians and will facilitate investigations of the evolutionary process of peptidergic regulation of oocyte maturation and ovulation throughout the phylum Chordata.

Data availability

All data generated or analyzed in this study are included in the manuscript and supporting files. Accession numbers of RNA-seq data in this study are described in Table 1 and Table 2. All RNA seq-data are provided in Supplementary file 1 and 4.

Article and author information

Author details

  1. Shin Matsubara

    Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  2. Akira Shiraishi

    Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  3. Tomohiro Osugi

    Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6987-9576
  4. Tsuyoshi Kawada

    Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Honoo Satake

    Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
    For correspondence
    satake@sunbor.or.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1165-3624

Funding

Japan Society for the Promotion of Science (JP16K07430)

  • Honoo Satake

Japan Society for the Promotion of Science (JP16K18581)

  • Shin Matsubara

Japan Society for the Promotion of Science (JP17J10624)

  • Shin Matsubara

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yukiko M Yamashita, University of Michigan, United States

Version history

  1. Received: June 5, 2019
  2. Accepted: September 26, 2019
  3. Accepted Manuscript published: October 1, 2019 (version 1)
  4. Version of Record published: October 10, 2019 (version 2)

Copyright

© 2019, Matsubara et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,013
    views
  • 358
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shin Matsubara
  2. Akira Shiraishi
  3. Tomohiro Osugi
  4. Tsuyoshi Kawada
  5. Honoo Satake
(2019)
The regulation of oocyte maturation and ovulation in the closest sister group of vertebrates
eLife 8:e49062.
https://doi.org/10.7554/eLife.49062

Share this article

https://doi.org/10.7554/eLife.49062

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Cell Biology
    2. Neuroscience
    Georg Kislinger, Gunar Fabig ... Martina Schifferer
    Tools and Resources

    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed ‘ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.