Differences in topological progression profile among neurodegenerative diseases from imaging data

  1. Sara Garbarino  Is a corresponding author
  2. Marco Lorenzi
  3. Neil P Oxtoby
  4. Elisabeth J Vinke
  5. Razvan V Marinescu
  6. Arman Eshaghi
  7. M Arfan Ikram
  8. Wiro J Niessen
  9. Olga Ciccarelli
  10. Frederik Barkhof
  11. Jonathan M Schott
  12. Meike W Vernooij
  13. Daniel C Alexander
  1. Inria Centre de Recherche Sophia Antipolis Méditerranée, France
  2. University College London, United Kingdom
  3. Erasmus Medical Center, Netherlands

Abstract

The spatial distribution of atrophy in neurodegenerative diseases suggests that brain connectivity mediates disease propagation. Different descriptors of the connectivity graph potentially relate to different underlying mechanisms of propagation. Previous approaches for evaluating the influence of connectivity on neurodegeneration consider each descriptor in isolation and match predictions against late-stage atrophy patterns. We introduce the notion of a topological profile — a characteristic combination of topological descriptors that best describes the propagation of pathology in a particular disease. By drawing on recent advances in disease progression modeling, we estimate topological profiles from the full course of pathology accumulation, at both cohort and individual levels. Experimental results comparing topological profiles for Alzheimer's disease, multiple sclerosis and normal ageing show that topological profiles explain the observed data better than single descriptors. Within each condition, most individual profiles cluster around the cohort-level profile, and individuals whose profiles align more closely with other cohort-level profiles show features of that cohort. The cohort-level profiles suggest new insights into the biological mechanisms underlying pathology propagation in each disease.

Data availability

AD data set from ADNI. ADNI is a public-private partnership. All ADNI data are shared without embargo through the LONI Image and Data Archive (https://ida.loni.usc.edu/login.jsp) a secure research data repository. Interested scientists may obtain access to ADNI imaging, clinical, genomic, and biomarker data for the purposes of scientific investigation, teaching, or planning clinical research studies. Access is contingent on adherence to the ADNI Data Use Agreement. For up-to-date information please see http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf.PPMS data set from UCLH. Data can be obtained upon request, directed the management team of the data at the Institute of Neurology, UCL: uclh.qsmsc@nhs.net.HA data set from the Rotterdam Study. Data can be obtained upon request. Requests should be directed towards the management team of the Rotterdam Study (secretariat.epi@erasmusmc.nl), which has a protocol for approving data requests. Because of restrictions based on privacy regulations and informed consent of the participants, data cannot be made freely available in a public repository. The Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC (registration number MEC 02.1015) and by the Dutch Ministry of Health, Welfare and Sport (Population Screening Act WBO, license number 1071272-159521-PG). The Rotterdam Study has been entered into the Netherlands National Trial Register (NTR; www.trialregister.nl) and into the WHO International Clinical Trials Registry Platform (ICTRP; www.who.int/ictrp/network/primary/en/) under shared catalogue number NTR6831. All participants provided written informed consent to participate in the study and to have their information obtained from treating physicians.HCP data are from the Human Connectome Project. Open Access Data (all imaging data and most of the behavioral data) is available to those who register an account at ConnectomeDB and agree to the Open Access Data Use Terms. This includes agreement to comply with institutional rules and regulations. For up-to-date information please see https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms.AD, PPMS and HA processed, anonymized and unrecognizable data, useful to process the mechanistic weights can be obtained upon request to the corresponding author: sara.garbarino@inria.fr.

The following previously published data sets were used
    1. Alzheimer's Disease Neuroimaging Initiative
    (2003) ADNI
    Alzheimer's Disease Neuroimaging Initiative.

Article and author information

Author details

  1. Sara Garbarino

    Epione team-project, Inria Centre de Recherche Sophia Antipolis Méditerranée, Sophia Antipolis, France
    For correspondence
    sara.garbarino@inria.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3583-3630
  2. Marco Lorenzi

    Epione team-project, Inria Centre de Recherche Sophia Antipolis Méditerranée, Sophia Antipolis, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Neil P Oxtoby

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0203-3909
  4. Elisabeth J Vinke

    Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Razvan V Marinescu

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Arman Eshaghi

    Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. M Arfan Ikram

    Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Wiro J Niessen

    Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Olga Ciccarelli

    Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Frederik Barkhof

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3543-3706
  11. Jonathan M Schott

    Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Meike W Vernooij

    Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Daniel C Alexander

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Horizon 2020 Framework Programme (666992)

  • Sara Garbarino
  • Marco Lorenzi
  • Neil P Oxtoby
  • Elisabeth J Vinke
  • Olga Ciccarelli
  • Frederik Barkhof
  • Jonathan M Schott
  • Meike W Vernooij
  • Daniel C Alexander

UCA Jedi (ANX 15 IDEX 01)

  • Sara Garbarino

Michael J Fox Foundation (BAND 15 368107 11042)

  • Neil P Oxtoby

Engineering and Physical Sciences Research Council (EP/M020533/1)

  • Neil P Oxtoby
  • Daniel C Alexander

Engineering and Physical Sciences Research Council (EP/J020990/01)

  • Neil P Oxtoby

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Floris P de Lange, Radboud University, Netherlands

Version history

  1. Received: June 13, 2019
  2. Accepted: December 2, 2019
  3. Accepted Manuscript published: December 3, 2019 (version 1)
  4. Accepted Manuscript updated: December 13, 2019 (version 2)
  5. Version of Record published: December 19, 2019 (version 3)

Copyright

© 2019, Garbarino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,068
    views
  • 313
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Garbarino
  2. Marco Lorenzi
  3. Neil P Oxtoby
  4. Elisabeth J Vinke
  5. Razvan V Marinescu
  6. Arman Eshaghi
  7. M Arfan Ikram
  8. Wiro J Niessen
  9. Olga Ciccarelli
  10. Frederik Barkhof
  11. Jonathan M Schott
  12. Meike W Vernooij
  13. Daniel C Alexander
(2019)
Differences in topological progression profile among neurodegenerative diseases from imaging data
eLife 8:e49298.
https://doi.org/10.7554/eLife.49298

Share this article

https://doi.org/10.7554/eLife.49298

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.