Differences in topological progression profile among neurodegenerative diseases from imaging data

  1. Sara Garbarino  Is a corresponding author
  2. Marco Lorenzi
  3. Neil P Oxtoby
  4. Elisabeth J Vinke
  5. Razvan V Marinescu
  6. Arman Eshaghi
  7. M Arfan Ikram
  8. Wiro J Niessen
  9. Olga Ciccarelli
  10. Frederik Barkhof
  11. Jonathan M Schott
  12. Meike W Vernooij
  13. Daniel C Alexander
  1. Inria Centre de Recherche Sophia Antipolis Méditerranée, France
  2. University College London, United Kingdom
  3. Erasmus Medical Center, Netherlands

Abstract

The spatial distribution of atrophy in neurodegenerative diseases suggests that brain connectivity mediates disease propagation. Different descriptors of the connectivity graph potentially relate to different underlying mechanisms of propagation. Previous approaches for evaluating the influence of connectivity on neurodegeneration consider each descriptor in isolation and match predictions against late-stage atrophy patterns. We introduce the notion of a topological profile — a characteristic combination of topological descriptors that best describes the propagation of pathology in a particular disease. By drawing on recent advances in disease progression modeling, we estimate topological profiles from the full course of pathology accumulation, at both cohort and individual levels. Experimental results comparing topological profiles for Alzheimer's disease, multiple sclerosis and normal ageing show that topological profiles explain the observed data better than single descriptors. Within each condition, most individual profiles cluster around the cohort-level profile, and individuals whose profiles align more closely with other cohort-level profiles show features of that cohort. The cohort-level profiles suggest new insights into the biological mechanisms underlying pathology propagation in each disease.

Data availability

AD data set from ADNI. ADNI is a public-private partnership. All ADNI data are shared without embargo through the LONI Image and Data Archive (https://ida.loni.usc.edu/login.jsp) a secure research data repository. Interested scientists may obtain access to ADNI imaging, clinical, genomic, and biomarker data for the purposes of scientific investigation, teaching, or planning clinical research studies. Access is contingent on adherence to the ADNI Data Use Agreement. For up-to-date information please see http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf.PPMS data set from UCLH. Data can be obtained upon request, directed the management team of the data at the Institute of Neurology, UCL: uclh.qsmsc@nhs.net.HA data set from the Rotterdam Study. Data can be obtained upon request. Requests should be directed towards the management team of the Rotterdam Study (secretariat.epi@erasmusmc.nl), which has a protocol for approving data requests. Because of restrictions based on privacy regulations and informed consent of the participants, data cannot be made freely available in a public repository. The Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC (registration number MEC 02.1015) and by the Dutch Ministry of Health, Welfare and Sport (Population Screening Act WBO, license number 1071272-159521-PG). The Rotterdam Study has been entered into the Netherlands National Trial Register (NTR; www.trialregister.nl) and into the WHO International Clinical Trials Registry Platform (ICTRP; www.who.int/ictrp/network/primary/en/) under shared catalogue number NTR6831. All participants provided written informed consent to participate in the study and to have their information obtained from treating physicians.HCP data are from the Human Connectome Project. Open Access Data (all imaging data and most of the behavioral data) is available to those who register an account at ConnectomeDB and agree to the Open Access Data Use Terms. This includes agreement to comply with institutional rules and regulations. For up-to-date information please see https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms.AD, PPMS and HA processed, anonymized and unrecognizable data, useful to process the mechanistic weights can be obtained upon request to the corresponding author: sara.garbarino@inria.fr.

The following previously published data sets were used
    1. Alzheimer's Disease Neuroimaging Initiative
    (2003) ADNI
    Alzheimer's Disease Neuroimaging Initiative.

Article and author information

Author details

  1. Sara Garbarino

    Epione team-project, Inria Centre de Recherche Sophia Antipolis Méditerranée, Sophia Antipolis, France
    For correspondence
    sara.garbarino@inria.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3583-3630
  2. Marco Lorenzi

    Epione team-project, Inria Centre de Recherche Sophia Antipolis Méditerranée, Sophia Antipolis, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Neil P Oxtoby

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0203-3909
  4. Elisabeth J Vinke

    Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Razvan V Marinescu

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Arman Eshaghi

    Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. M Arfan Ikram

    Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Wiro J Niessen

    Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Olga Ciccarelli

    Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Frederik Barkhof

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3543-3706
  11. Jonathan M Schott

    Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Meike W Vernooij

    Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Daniel C Alexander

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Horizon 2020 Framework Programme (666992)

  • Sara Garbarino
  • Marco Lorenzi
  • Neil P Oxtoby
  • Elisabeth J Vinke
  • Olga Ciccarelli
  • Frederik Barkhof
  • Jonathan M Schott
  • Meike W Vernooij
  • Daniel C Alexander

UCA Jedi (ANX 15 IDEX 01)

  • Sara Garbarino

Michael J Fox Foundation (BAND 15 368107 11042)

  • Neil P Oxtoby

Engineering and Physical Sciences Research Council (EP/M020533/1)

  • Neil P Oxtoby
  • Daniel C Alexander

Engineering and Physical Sciences Research Council (EP/J020990/01)

  • Neil P Oxtoby

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Floris P de Lange, Radboud University, Netherlands

Publication history

  1. Received: June 13, 2019
  2. Accepted: December 2, 2019
  3. Accepted Manuscript published: December 3, 2019 (version 1)
  4. Accepted Manuscript updated: December 13, 2019 (version 2)
  5. Version of Record published: December 19, 2019 (version 3)

Copyright

© 2019, Garbarino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,718
    Page views
  • 268
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Garbarino
  2. Marco Lorenzi
  3. Neil P Oxtoby
  4. Elisabeth J Vinke
  5. Razvan V Marinescu
  6. Arman Eshaghi
  7. M Arfan Ikram
  8. Wiro J Niessen
  9. Olga Ciccarelli
  10. Frederik Barkhof
  11. Jonathan M Schott
  12. Meike W Vernooij
  13. Daniel C Alexander
(2019)
Differences in topological progression profile among neurodegenerative diseases from imaging data
eLife 8:e49298.
https://doi.org/10.7554/eLife.49298

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Jayashree Kumar et al.
    Research Article Updated

    Splicing is highly regulated and is modulated by numerous factors. Quantitative predictions for how a mutation will affect precursor mRNA (pre-mRNA) structure and downstream function are particularly challenging. Here, we use a novel chemical probing strategy to visualize endogenous precursor and mature MAPT mRNA structures in cells. We used these data to estimate Boltzmann suboptimal structural ensembles, which were then analyzed to predict consequences of mutations on pre-mRNA structure. Further analysis of recent cryo-EM structures of the spliceosome at different stages of the splicing cycle revealed that the footprint of the Bact complex with pre-mRNA best predicted alternative splicing outcomes for exon 10 inclusion of the alternatively spliced MAPT gene, achieving 74% accuracy. We further developed a β-regression weighting framework that incorporates splice site strength, RNA structure, and exonic/intronic splicing regulatory elements capable of predicting, with 90% accuracy, the effects of 47 known and 6 newly discovered mutations on inclusion of exon 10 of MAPT. This combined experimental and computational framework represents a path forward for accurate prediction of splicing-related disease-causing variants.

    1. Computational and Systems Biology
    Mayank Baranwal et al.
    Research Article

    Predicting the dynamics and functions of microbiomes constructed from the bottom-up is a key challenge in exploiting them to our benefit. Current models based on ecological theory fail to capture complex community behaviors due to higher order interactions, do not scale well with increasing complexity and in considering multiple functions. We develop and apply a long short-term memory (LSTM) framework to advance our understanding of community assembly and health-relevant metabolite production using a synthetic human gut community. A mainstay of recurrent neural networks, the LSTM learns a high dimensional data-driven non-linear dynamical system model. We show that the LSTM model can outperform the widely used generalized Lotka-Volterra model based on ecological theory. We build methods to decipher microbe-microbe and microbe-metabolite interactions from an otherwise black-box model. These methods highlight that Actinobacteria, Firmicutes and Proteobacteria are significant drivers of metabolite production whereas Bacteroides shape community dynamics. We use the LSTM model to navigate a large multidimensional functional landscape to design communities with unique health-relevant metabolite profiles and temporal behaviors. In sum, the accuracy of the LSTM model can be exploited for experimental planning and to guide the design of synthetic microbiomes with target dynamic functions.