Differences in topological progression profile among neurodegenerative diseases from imaging data

  1. Sara Garbarino  Is a corresponding author
  2. Marco Lorenzi
  3. Neil P Oxtoby
  4. Elisabeth J Vinke
  5. Razvan V Marinescu
  6. Arman Eshaghi
  7. M Arfan Ikram
  8. Wiro J Niessen
  9. Olga Ciccarelli
  10. Frederik Barkhof
  11. Jonathan M Schott
  12. Meike W Vernooij
  13. Daniel C Alexander
  1. Inria Centre de Recherche Sophia Antipolis Méditerranée, France
  2. University College London, United Kingdom
  3. Erasmus Medical Center, Netherlands

Abstract

The spatial distribution of atrophy in neurodegenerative diseases suggests that brain connectivity mediates disease propagation. Different descriptors of the connectivity graph potentially relate to different underlying mechanisms of propagation. Previous approaches for evaluating the influence of connectivity on neurodegeneration consider each descriptor in isolation and match predictions against late-stage atrophy patterns. We introduce the notion of a topological profile — a characteristic combination of topological descriptors that best describes the propagation of pathology in a particular disease. By drawing on recent advances in disease progression modeling, we estimate topological profiles from the full course of pathology accumulation, at both cohort and individual levels. Experimental results comparing topological profiles for Alzheimer's disease, multiple sclerosis and normal ageing show that topological profiles explain the observed data better than single descriptors. Within each condition, most individual profiles cluster around the cohort-level profile, and individuals whose profiles align more closely with other cohort-level profiles show features of that cohort. The cohort-level profiles suggest new insights into the biological mechanisms underlying pathology propagation in each disease.

Data availability

AD data set from ADNI. ADNI is a public-private partnership. All ADNI data are shared without embargo through the LONI Image and Data Archive (https://ida.loni.usc.edu/login.jsp) a secure research data repository. Interested scientists may obtain access to ADNI imaging, clinical, genomic, and biomarker data for the purposes of scientific investigation, teaching, or planning clinical research studies. Access is contingent on adherence to the ADNI Data Use Agreement. For up-to-date information please see http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_DSP_Policy.pdf.PPMS data set from UCLH. Data can be obtained upon request, directed the management team of the data at the Institute of Neurology, UCL: uclh.qsmsc@nhs.net.HA data set from the Rotterdam Study. Data can be obtained upon request. Requests should be directed towards the management team of the Rotterdam Study (secretariat.epi@erasmusmc.nl), which has a protocol for approving data requests. Because of restrictions based on privacy regulations and informed consent of the participants, data cannot be made freely available in a public repository. The Rotterdam Study has been approved by the Medical Ethics Committee of the Erasmus MC (registration number MEC 02.1015) and by the Dutch Ministry of Health, Welfare and Sport (Population Screening Act WBO, license number 1071272-159521-PG). The Rotterdam Study has been entered into the Netherlands National Trial Register (NTR; www.trialregister.nl) and into the WHO International Clinical Trials Registry Platform (ICTRP; www.who.int/ictrp/network/primary/en/) under shared catalogue number NTR6831. All participants provided written informed consent to participate in the study and to have their information obtained from treating physicians.HCP data are from the Human Connectome Project. Open Access Data (all imaging data and most of the behavioral data) is available to those who register an account at ConnectomeDB and agree to the Open Access Data Use Terms. This includes agreement to comply with institutional rules and regulations. For up-to-date information please see https://www.humanconnectome.org/study/hcp-young-adult/data-use-terms.

The following previously published data sets were used
    1. Alzheimer's Disease Neuroimaging Initiative
    (2003) ADNI
    Alzheimer's Disease Neuroimaging Initiative.

Article and author information

Author details

  1. Sara Garbarino

    Epione team-project, Inria Centre de Recherche Sophia Antipolis Méditerranée, Sophia Antipolis, France
    For correspondence
    sara.garbarino@inria.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3583-3630
  2. Marco Lorenzi

    Epione team-project, Inria Centre de Recherche Sophia Antipolis Méditerranée, Sophia Antipolis, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Neil P Oxtoby

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0203-3909
  4. Elisabeth J Vinke

    Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  5. Razvan V Marinescu

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Arman Eshaghi

    Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. M Arfan Ikram

    Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Wiro J Niessen

    Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Olga Ciccarelli

    Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Frederik Barkhof

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3543-3706
  11. Jonathan M Schott

    Dementia Research Centre, Institute of Neurology, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Meike W Vernooij

    Department of Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  13. Daniel C Alexander

    Centre for Medical Image Computing, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Horizon 2020 Framework Programme (666992)

  • Sara Garbarino
  • Marco Lorenzi
  • Neil P Oxtoby
  • Elisabeth J Vinke
  • Olga Ciccarelli
  • Frederik Barkhof
  • Jonathan M Schott
  • Meike W Vernooij
  • Daniel C Alexander

UCA Jedi (ANX 15 IDEX 01)

  • Sara Garbarino

Michael J Fox Foundation (BAND 15 368107 11042)

  • Neil P Oxtoby

Engineering and Physical Sciences Research Council (EP/M020533/1)

  • Neil P Oxtoby
  • Daniel C Alexander

Engineering and Physical Sciences Research Council (EP/J020990/01)

  • Neil P Oxtoby

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Garbarino et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,088
    views
  • 315
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sara Garbarino
  2. Marco Lorenzi
  3. Neil P Oxtoby
  4. Elisabeth J Vinke
  5. Razvan V Marinescu
  6. Arman Eshaghi
  7. M Arfan Ikram
  8. Wiro J Niessen
  9. Olga Ciccarelli
  10. Frederik Barkhof
  11. Jonathan M Schott
  12. Meike W Vernooij
  13. Daniel C Alexander
(2019)
Differences in topological progression profile among neurodegenerative diseases from imaging data
eLife 8:e49298.
https://doi.org/10.7554/eLife.49298

Share this article

https://doi.org/10.7554/eLife.49298

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Computational and Systems Biology
    2. Structural Biology and Molecular Biophysics
    Bin Zheng, Meimei Duan ... Peng Zheng
    Research Article

    Viral adhesion to host cells is a critical step in infection for many viruses, including monkeypox virus (MPXV). In MPXV, the H3 protein mediates viral adhesion through its interaction with heparan sulfate (HS), yet the structural details of this interaction have remained elusive. Using AI-based structural prediction tools and molecular dynamics (MD) simulations, we identified a novel, positively charged α-helical domain in H3 that is essential for HS binding. This conserved domain, found across orthopoxviruses, was experimentally validated and shown to be critical for viral adhesion, making it an ideal target for antiviral drug development. Targeting this domain, we designed a protein inhibitor, which disrupted the H3-HS interaction, inhibited viral infection in vitro and viral replication in vivo, offering a promising antiviral candidate. Our findings reveal a novel therapeutic target of MPXV, demonstrating the potential of combination of AI-driven methods and MD simulations to accelerate antiviral drug discovery.