1. Cell Biology
  2. Evolutionary Biology
Download icon

A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization

  1. Omaya Dudin
  2. Andrej Ondracka
  3. Xavier Grau-Bové
  4. Arthur AB Haraldsen
  5. Atsushi Toyoda
  6. Hiroshi Suga
  7. Jon Bråte
  8. Iñaki Ruiz-Trillo  Is a corresponding author
  1. CSIC-Universitat Pompeu Fabra, Spain
  2. University of Oslo, Norway
  3. National Institute of Genetics, Japan
  4. Prefectural University of Hiroshima, Japan
Research Article
  • Cited 11
  • Views 3,694
  • Annotations
Cite this article as: eLife 2019;8:e49801 doi: 10.7554/eLife.49801
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a self-organized, clonally-generated, polarized layer of cells in a unicellular relative of animals.

Data availability

Sequencing data have been deposited at the following locations :S. arctica genome assembly - BioProject number PRJDB8476S. arctica transcriptomes - PRJEB32922 (ERP115662) on European Nucleotide Archive

The following data sets were generated

Article and author information

Author details

  1. Omaya Dudin

    Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6673-3149
  2. Andrej Ondracka

    Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Xavier Grau-Bové

    Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1978-5824
  4. Arthur AB Haraldsen

    Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
  5. Atsushi Toyoda

    Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0728-7548
  6. Hiroshi Suga

    Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Japan
    Competing interests
    The authors declare that no competing interests exist.
  7. Jon Bråte

    Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0490-1175
  8. Iñaki Ruiz-Trillo

    Institut de Biologia Evolutiva, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
    For correspondence
    inaki.ruiz@ibe.upf-csic.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6547-5304

Funding

European Research Council Consolidator Grant (ERC-2012-Co -616960)

  • Iñaki Ruiz-Trillo

MEXT KAKENHI (221S0002)

  • Atsushi Toyoda

MEXT KAKENHI (26891021)

  • Hiroshi Suga

Young Research Talents grant from the Research Council of Norway (240284)

  • Jon Bråte

Swiss National Science Foundation (P2LAP3_171815)

  • Omaya Dudin

Marie Sklodowska-Curie individual fellowship (MSCA-IF 746044)

  • Omaya Dudin

Marie Sklodowska-Curie individual fellowship (MSCA-IF 747086)

  • Andrej Ondracka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mukund Thattai, National Centre for Biological Sciences, India

Publication history

  1. Received: June 29, 2019
  2. Accepted: October 23, 2019
  3. Accepted Manuscript published: October 24, 2019 (version 1)
  4. Accepted Manuscript updated: October 28, 2019 (version 2)
  5. Version of Record published: November 14, 2019 (version 3)
  6. Version of Record updated: June 19, 2020 (version 4)

Copyright

© 2019, Dudin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,694
    Page views
  • 463
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    James Rae et al.
    Tools and Resources Updated

    Genetic tags allow rapid localization of tagged proteins in cells and tissues. APEX, an ascorbate peroxidase, has proven to be one of the most versatile and robust genetic tags for ultrastructural localization by electron microscopy (EM). Here, we describe a simple method, APEX-Gold, which converts the diffuse oxidized diaminobenzidine reaction product of APEX into a silver/gold particle akin to that used for immunogold labelling. The method increases the signal-to-noise ratio for EM detection, providing unambiguous detection of the tagged protein, and creates a readily quantifiable particulate signal. We demonstrate the wide applicability of this method for detection of membrane proteins, cytoplasmic proteins, and cytoskeletal proteins. The method can be combined with different EM techniques including fast freezing and freeze substitution, focussed ion beam scanning EM, and electron tomography. Quantitation of expressed APEX-fusion proteins is achievable using membrane vesicles generated by a cell-free expression system. These membrane vesicles possess a defined quantum of signal, which can act as an internal standard for determination of the absolute density of expressed APEX-fusion proteins. Detection of fusion proteins expressed at low levels in cells from CRISPR-edited mice demonstrates the high sensitivity of the APEX-Gold method.