A unicellular relative of animals generates a layer of polarized cells by actomyosin-dependent cellularization
Abstract
In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly regulated transcriptional activation of genes involved in cell adhesion. Hereby we demonstrate the presence of a self-organized, clonally-generated, polarized layer of cells in a unicellular relative of animals.
Data availability
Sequencing data have been deposited at the following locations :S. arctica genome assembly - BioProject number PRJDB8476S. arctica transcriptomes - PRJEB32922 (ERP115662) on European Nucleotide Archive
-
Sphaeroforma arctica genome assemblyNCBI BioProject, PRJDB8476.
-
Dynamics of transcription during the coenocytic cycle of Sphaeroforma arcticaEuropean nucleotide archive, PRJEB32922 (ERP115662).
Article and author information
Author details
Funding
European Research Council Consolidator Grant (ERC-2012-Co -616960)
- Iñaki Ruiz-Trillo
MEXT KAKENHI (221S0002)
- Atsushi Toyoda
MEXT KAKENHI (26891021)
- Hiroshi Suga
Young Research Talents grant from the Research Council of Norway (240284)
- Jon Bråte
Swiss National Science Foundation (P2LAP3_171815)
- Omaya Dudin
Marie Sklodowska-Curie individual fellowship (MSCA-IF 746044)
- Omaya Dudin
Marie Sklodowska-Curie individual fellowship (MSCA-IF 747086)
- Andrej Ondracka
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2019, Dudin et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 6,317
- views
-
- 687
- downloads
-
- 55
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Endometriosis is a debilitating disease affecting 190 million women worldwide and the greatest single contributor to infertility. The most broadly accepted etiology is that uterine endometrial cells retrogradely enter the peritoneum during menses, and implant and form invasive lesions in a process analogous to cancer metastasis. However, over 90% of women suffer retrograde menstruation, but only 10% develop endometriosis, and debate continues as to whether the underlying defect is endometrial or peritoneal. Processes implicated in invasion include: enhanced motility; adhesion to, and formation of gap junctions with, the target tissue. Endometrial stromal (ESCs) from 22 endometriosis patients at different disease stages show much greater invasiveness across mesothelial (or endothelial) monolayers than ESCs from 22 control subjects, which is further enhanced by the presence of EECs. This is due to the enhanced responsiveness of endometriosis ESCs to the mesothelium, which induces migration and gap junction coupling. ESC-PMC gap junction coupling is shown to be required for invasion, while coupling between PMCs enhances mesothelial barrier breakdown.