TRF1 averts chromatin remodelling, recombination and replication dependent-Break Induced Replication at mouse telomeres

  1. Rosa Maria Porreca
  2. Emilia Herrera-Moyano
  3. Eleni Skourti
  4. Pui Pik Law
  5. Roser Gonzalez Franco
  6. Alex Montoya
  7. Peter Faull
  8. Holger Kramer
  9. Jean-Baptiste Vannier  Is a corresponding author
  1. MRC London Institute of Medical Sciences, United Kingdom
  2. The Francis Crick Institute, United Kingdom

Abstract

Telomeres are a significant challenge to DNA replication and are prone to replication stress and telomere fragility. The shelterin component TRF1 facilitates telomere replication but the molecular mechanism remains uncertain. By interrogating the proteomic composition of telomeres, we show that mouse telomeres lacking TRF1 undergo protein composition reorganisation associated with the recruitment of DNA damage response and chromatin remodellers. Surprisingly, mTRF1 suppresses the accumulation of promyelocytic leukemia (PML) protein, BRCA1 and the SMC5/6 complex at telomeres, which is associated with increased Homologous Recombination (HR) and TERRA transcription. We uncovered a previously unappreciated role for mTRF1 in the suppression of telomere recombination, dependent on SMC5 and also POLD3 dependent Break Induced Replication at telomeres. We propose that TRF1 facilitates S-phase telomeric DNA synthesis to prevent illegitimate mitotic DNA recombination and chromatin rearrangement.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.Proteomic data have been made available at PRIDE, under the accession code PXD017022.

The following data sets were generated

Article and author information

Author details

  1. Rosa Maria Porreca

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Emilia Herrera-Moyano

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Eleni Skourti

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Pui Pik Law

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8924-0462
  5. Roser Gonzalez Franco

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Montoya

    Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Faull

    Proteomics Mass Spectrometry Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8491-8086
  8. Holger Kramer

    Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean-Baptiste Vannier

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    j.vannier@lms.mrc.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4471-1854

Funding

European Commission (637798 MetDNASecStr)

  • Pui Pik Law

Medical Research Council (MRC Career Development Award)

  • Emilia Herrera-Moyano
  • Pui Pik Law
  • Roser Gonzalez Franco
  • Alex Montoya
  • Holger Kramer
  • Jean-Baptiste Vannier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymund Wellinger, Université de Sherbrooke, Canada

Version history

  1. Received: July 1, 2019
  2. Accepted: January 11, 2020
  3. Accepted Manuscript published: January 14, 2020 (version 1)
  4. Version of Record published: January 28, 2020 (version 2)
  5. Version of Record updated: February 7, 2020 (version 3)
  6. Version of Record updated: February 10, 2020 (version 4)

Copyright

© 2020, Porreca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,252
    views
  • 546
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rosa Maria Porreca
  2. Emilia Herrera-Moyano
  3. Eleni Skourti
  4. Pui Pik Law
  5. Roser Gonzalez Franco
  6. Alex Montoya
  7. Peter Faull
  8. Holger Kramer
  9. Jean-Baptiste Vannier
(2020)
TRF1 averts chromatin remodelling, recombination and replication dependent-Break Induced Replication at mouse telomeres
eLife 9:e49817.
https://doi.org/10.7554/eLife.49817

Share this article

https://doi.org/10.7554/eLife.49817

Further reading

    1. Cancer Biology
    2. Cell Biology
    Dongyue Jiao, Huiru Sun ... Kun Gao
    Research Article

    Enhanced protein synthesis is a crucial molecular mechanism that allows cancer cells to survive, proliferate, metastasize, and develop resistance to anti-cancer treatments, and often arises as a consequence of increased signaling flux channeled to mRNA-bearing eukaryotic initiation factor 4F (eIF4F). However, the post-translational regulation of eIF4A1, an ATP-dependent RNA helicase and subunit of the eIF4F complex, is still poorly understood. Here, we demonstrate that IBTK, a substrate-binding adaptor of the Cullin 3-RING ubiquitin ligase (CRL3) complex, interacts with eIF4A1. The non-degradative ubiquitination of eIF4A1 catalyzed by the CRL3IBTK complex promotes cap-dependent translational initiation, nascent protein synthesis, oncogene expression, and cervical tumor cell growth both in vivo and in vitro. Moreover, we show that mTORC1 and S6K1, two key regulators of protein synthesis, directly phosphorylate IBTK to augment eIF4A1 ubiquitination and sustained oncogenic translation. This link between the CRL3IBTK complex and the mTORC1/S6K1 signaling pathway, which is frequently dysregulated in cancer, represents a promising target for anti-cancer therapies.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article Updated

    Mediator of ERBB2-driven cell motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high-MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.