TRF1 averts chromatin remodelling, recombination and replication dependent-Break Induced Replication at mouse telomeres

  1. Rosa Maria Porreca
  2. Emilia Herrera-Moyano
  3. Eleni Skourti
  4. Pui Pik Law
  5. Roser Gonzalez Franco
  6. Alex Montoya
  7. Peter Faull
  8. Holger Kramer
  9. Jean-Baptiste Vannier  Is a corresponding author
  1. MRC London Institute of Medical Sciences, United Kingdom
  2. The Francis Crick Institute, United Kingdom

Abstract

Telomeres are a significant challenge to DNA replication and are prone to replication stress and telomere fragility. The shelterin component TRF1 facilitates telomere replication but the molecular mechanism remains uncertain. By interrogating the proteomic composition of telomeres, we show that mouse telomeres lacking TRF1 undergo protein composition reorganisation associated with the recruitment of DNA damage response and chromatin remodellers. Surprisingly, mTRF1 suppresses the accumulation of promyelocytic leukemia (PML) protein, BRCA1 and the SMC5/6 complex at telomeres, which is associated with increased Homologous Recombination (HR) and TERRA transcription. We uncovered a previously unappreciated role for mTRF1 in the suppression of telomere recombination, dependent on SMC5 and also POLD3 dependent Break Induced Replication at telomeres. We propose that TRF1 facilitates S-phase telomeric DNA synthesis to prevent illegitimate mitotic DNA recombination and chromatin rearrangement.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.Proteomic data have been made available at PRIDE, under the accession code PXD017022.

The following data sets were generated

Article and author information

Author details

  1. Rosa Maria Porreca

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Emilia Herrera-Moyano

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Eleni Skourti

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Pui Pik Law

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8924-0462
  5. Roser Gonzalez Franco

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Alex Montoya

    Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Faull

    Proteomics Mass Spectrometry Science and Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8491-8086
  8. Holger Kramer

    Biological Mass Spectrometry and Proteomics Facility, MRC London Institute of Medical Sciences, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean-Baptiste Vannier

    Telomere Replication and Stability Group, MRC London Institute of Medical Sciences, London, United Kingdom
    For correspondence
    j.vannier@lms.mrc.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4471-1854

Funding

European Commission (637798 MetDNASecStr)

  • Pui Pik Law

Medical Research Council (MRC Career Development Award)

  • Emilia Herrera-Moyano
  • Pui Pik Law
  • Roser Gonzalez Franco
  • Alex Montoya
  • Holger Kramer
  • Jean-Baptiste Vannier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Raymund Wellinger, Université de Sherbrooke, Canada

Version history

  1. Received: July 1, 2019
  2. Accepted: January 11, 2020
  3. Accepted Manuscript published: January 14, 2020 (version 1)
  4. Version of Record published: January 28, 2020 (version 2)
  5. Version of Record updated: February 7, 2020 (version 3)
  6. Version of Record updated: February 10, 2020 (version 4)

Copyright

© 2020, Porreca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,205
    Page views
  • 536
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rosa Maria Porreca
  2. Emilia Herrera-Moyano
  3. Eleni Skourti
  4. Pui Pik Law
  5. Roser Gonzalez Franco
  6. Alex Montoya
  7. Peter Faull
  8. Holger Kramer
  9. Jean-Baptiste Vannier
(2020)
TRF1 averts chromatin remodelling, recombination and replication dependent-Break Induced Replication at mouse telomeres
eLife 9:e49817.
https://doi.org/10.7554/eLife.49817

Share this article

https://doi.org/10.7554/eLife.49817

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Guanxiong Yan, Yang Ma ... Wei Miao
    Research Article

    Although most species have two sexes, multisexual (or multi-mating type) species are also widespread. However, it is unclear how mating-type recognition is achieved at the molecular level in multisexual species. The unicellular ciliate Tetrahymena thermophila has seven mating types, which are determined by the MTA and MTB proteins. In this study, we found that both proteins are essential for cells to send or receive complete mating-type information, and transmission of the mating-type signal requires both proteins to be expressed in the same cell. We found that MTA and MTB form a mating-type recognition complex that localizes to the plasma membrane, but not to the cilia. Stimulation experiments showed that the mating-type-specific regions of MTA and MTB mediate both self- and non-self-recognition, indicating that T. thermophila uses a dual approach to achieve mating-type recognition. Our results suggest that MTA and MTB form an elaborate multifunctional protein complex that can identify cells of both self and non-self mating types in order to inhibit or activate mating, respectively.

    1. Cell Biology
    2. Neuroscience
    Anna Kádková, Jacqueline Murach ... Jakob Balslev Sørensen
    Research Article

    SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.