Abstract

Numerous challenges have impeded HIV-1 vaccine development. Among these is the lack of a convenient small animal model in which to study antibody elicitation and efficacy. We describe a chimeric Rhabdo-Immunodeficiency virus (RhIV) murine model that recapitulates key features of HIV-1 entry, tropism and antibody sensitivity. RhIVs are based on vesicular stomatitis viruses (VSV), but viral entry is mediated by HIV-1 Env proteins from diverse HIV-1 strains. RhIV infection of transgenic mice expressing human CD4 and CCR5, exclusively on mouse CD4+ cells, at levels mimicking those on human CD4+ T-cells, resulted in acute, resolving viremia and CD4+ T-cell depletion. RhIV infection elicited protective immunity, and antibodies to HIV-1 Env that were primarily non-neutralizing and had modest protective efficacy following passive transfer. The RhIV model enables the convenient in vivo study of HIV-1 Env-receptor interactions, antiviral activity of antibodies and humoral responses against HIV-1 Env, in a genetically manipulatable host.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Rachel A Liberatore

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Emily J Mastrocola

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elena Cassella

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabian Schmidt

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jesse R Willen

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Denis Voronin

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Trinity M Zang

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Theodora Hatziioannou

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Paul D Bieniasz

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    For correspondence
    pbieniasz@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2368-3719

Funding

National Institute of Allergy and Infectious Diseases (R37AI064003)

  • Paul D Bieniasz

National Institute of Allergy and Infectious Diseases (R01AI078788)

  • Theodora Hatziioannou

National Institute of Allergy and Infectious Diseases (R01AI50111)

  • Paul D Bieniasz

Howard Hughes Medical Institute

  • Paul D Bieniasz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (18047-H) of the Rockefeller University. All surgery was performed under anesthesia, and every effort was made to minimize suffering.

Copyright

© 2019, Liberatore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,529
    views
  • 217
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachel A Liberatore
  2. Emily J Mastrocola
  3. Elena Cassella
  4. Fabian Schmidt
  5. Jesse R Willen
  6. Denis Voronin
  7. Trinity M Zang
  8. Theodora Hatziioannou
  9. Paul D Bieniasz
(2019)
Rhabdo-immunodeficiency virus, a murine model of acute HIV-1 infection
eLife 8:e49875.
https://doi.org/10.7554/eLife.49875

Share this article

https://doi.org/10.7554/eLife.49875

Further reading

    1. Microbiology and Infectious Disease
    Hui Li, Jun Yang ... Bo Peng
    Research Article

    Non-inheritable antibiotic or phenotypic resistance ensures bacterial survival during antibiotic treatment. However, exogenous factors promoting phenotypic resistance are poorly defined. Here, we demonstrate that Vibrio alginolyticus are recalcitrant to killing by a broad spectrum of antibiotics under high magnesium. Functional metabolomics demonstrated that magnesium modulates fatty acid biosynthesis by increasing saturated fatty acid biosynthesis while decreasing unsaturated fatty acid production. Exogenous supplementation of unsaturated and saturated fatty acids increased and decreased bacterial susceptibility to antibiotics, respectively, confirming the role of fatty acids in antibiotic resistance. Functional lipidomics revealed that glycerophospholipid metabolism is the major metabolic pathway remodeled by magnesium, where phosphatidylethanolamine biosynthesis is reduced and phosphatidylglycerol production is increased. This process alters membrane composition, increasing membrane polarization, and decreasing permeability and fluidity, thereby reducing antibiotic uptake by V. alginolyticus. These findings suggest the presence of a previously unrecognized metabolic mechanism by which bacteria escape antibiotic killing through the use of an environmental factor.

    1. Microbiology and Infectious Disease
    Han Kang Tee, Simon Crouzet ... Caroline Tapparel
    Research Article

    Because of high mutation rates, viruses constantly adapt to new environments. When propagated in cell lines, certain viruses acquire positively charged amino acids on their surface proteins, enabling them to utilize negatively charged heparan sulfate (HS) as an attachment receptor. In this study, we used enterovirus A71 (EV-A71) as model and demonstrated that unlike the parental MP4 variant, the cell-adapted strong HS-binder MP4-97R/167G does not require acidification for uncoating and releases its genome in the neutral or weakly acidic environment of early endosomes. We experimentally confirmed that this pH-independent entry is not associated with the use of HS as an attachment receptor but rather with compromised capsid stability. We then extended these findings to another HS-dependent strain. In summary, our data indicate that acquisition of capsid mutations conferring affinity for HS come together with decreased capsid stability and allow EV-A71 to enter the cell via a pH-independent pathway. This pH-independent entry mechanism boosts viral replication in cell lines but may prove deleterious in vivo, especially for enteric viruses crossing the acidic gastric environment before reaching their primary replication site, the intestine. Our study thus provides new insight into the mechanisms underlying the in vivo attenuation of HS-binding EV-A71 strains. Not only are these viruses hindered in tissues rich in HS due to viral trapping, as generally accepted, but our research reveals that their diminished capsid stability further contributes to attenuation in vivo. This underscores the complex relationship between HS-binding, capsid stability, and viral fitness, where increased replication in cell lines coincides with attenuation in harsh in vivo environments like the gastrointestinal tract.