Abstract

Numerous challenges have impeded HIV-1 vaccine development. Among these is the lack of a convenient small animal model in which to study antibody elicitation and efficacy. We describe a chimeric Rhabdo-Immunodeficiency virus (RhIV) murine model that recapitulates key features of HIV-1 entry, tropism and antibody sensitivity. RhIVs are based on vesicular stomatitis viruses (VSV), but viral entry is mediated by HIV-1 Env proteins from diverse HIV-1 strains. RhIV infection of transgenic mice expressing human CD4 and CCR5, exclusively on mouse CD4+ cells, at levels mimicking those on human CD4+ T-cells, resulted in acute, resolving viremia and CD4+ T-cell depletion. RhIV infection elicited protective immunity, and antibodies to HIV-1 Env that were primarily non-neutralizing and had modest protective efficacy following passive transfer. The RhIV model enables the convenient in vivo study of HIV-1 Env-receptor interactions, antiviral activity of antibodies and humoral responses against HIV-1 Env, in a genetically manipulatable host.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Rachel A Liberatore

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Emily J Mastrocola

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elena Cassella

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Fabian Schmidt

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jessie R Willen

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Dennis Voronin

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Trinity M Zang

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Theodora Hatziioannou

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Paul D Bieniasz

    Laboratory of Retrovirology, The Rockefeller University, New York, United States
    For correspondence
    pbieniasz@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2368-3719

Funding

National Institute of Allergy and Infectious Diseases (R37AI064003)

  • Paul D Bieniasz

National Institute of Allergy and Infectious Diseases (R01AI078788)

  • Theodora Hatziioannou

National Institute of Allergy and Infectious Diseases (R01AI50111)

  • Paul D Bieniasz

Howard Hughes Medical Institute

  • Paul D Bieniasz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frank Kirchhoff, Ulm University Medical Center, Germany

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocol (18047-H) of the Rockefeller University. All surgery was performed under anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: July 3, 2019
  2. Accepted: October 22, 2019
  3. Accepted Manuscript published: October 23, 2019 (version 1)
  4. Accepted Manuscript updated: October 24, 2019 (version 2)
  5. Version of Record published: November 22, 2019 (version 3)

Copyright

© 2019, Liberatore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,485
    views
  • 212
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rachel A Liberatore
  2. Emily J Mastrocola
  3. Elena Cassella
  4. Fabian Schmidt
  5. Jessie R Willen
  6. Dennis Voronin
  7. Trinity M Zang
  8. Theodora Hatziioannou
  9. Paul D Bieniasz
(2019)
Rhabdo-immunodeficiency virus, a murine model of acute HIV-1 infection
eLife 8:e49875.
https://doi.org/10.7554/eLife.49875

Share this article

https://doi.org/10.7554/eLife.49875

Further reading

    1. Microbiology and Infectious Disease
    2. Structural Biology and Molecular Biophysics
    Thomas Kuhlman
    Insight

    A new study reveals how naturally occurring mutations affect the biophysical properties of nucleocapsid proteins in SARS-CoV-2.

    1. Microbiology and Infectious Disease
    Gretchen Diffendall, Aurelie Claes ... Artur Scherf
    Research Article

    While often undetected and untreated, persistent seasonal asymptomatic malaria infections remain a global public health problem. Despite the presence of parasites in the peripheral blood, no symptoms develop. Disease severity is correlated with the levels of infected red blood cells (iRBCs) adhering within blood vessels. Changes in iRBC adhesion capacity have been linked to seasonal asymptomatic malaria infections, however how this is occurring is still unknown. Here, we present evidence that RNA polymerase III (RNA Pol III) transcription in Plasmodium falciparum is downregulated in field isolates obtained from asymptomatic individuals during the dry season. Through experiments with in vitro cultured parasites, we have uncovered an RNA Pol III-dependent mechanism that controls pathogen proliferation and expression of a major virulence factor in response to external stimuli. Our findings establish a connection between P. falciparum cytoadhesion and a non-coding RNA family transcribed by Pol III. Additionally, we have identified P. falciparum Maf1 as a pivotal regulator of Pol III transcription, both for maintaining cellular homeostasis and for responding adaptively to external signals. These results introduce a novel perspective that contributes to our understanding of P. falciparum virulence. Furthermore, they establish a connection between this regulatory process and the occurrence of seasonal asymptomatic malaria infections.