Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions

  1. Luis V Nobre
  2. Katie Nightingale
  3. Benjamin J Ravenhill
  4. Robin Antrobus
  5. Lior Soday
  6. Jenna Nichols
  7. James A Davies
  8. Sepehr Seirafian
  9. Eddie CY Wang
  10. Andrew J Davison
  11. Gavin WG Wilkinson
  12. Richard J Stanton
  13. Edward L Huttlin
  14. Michael P Weekes  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. MRC-University of Glasgow Centre for Virus Research, United Kingdom
  3. Cardiff University School of Medicine, United Kingdom
  4. Harvard Medical School, United States

Abstract

Human cytomegalovirus (HCMV) extensively modulates host cells, downregulating >900 human proteins during viral replication and degrading ≥133 proteins shortly after infection. The mechanism of degradation of most host proteins remains unresolved, and the functions of many viral proteins are incompletely characterised. We performed a mass spectrometry-based interactome analysis of 169 tagged, stably-expressed canonical strain Merlin HCMV proteins, and two non-canonical HCMV proteins, in infected cells. This identified a network of >3,400 virus-host and >150 virus-virus protein interactions, providing insights into functions for multiple viral genes. Domain analysis predicted binding of the viral UL25 protein to SH3 domains of NCK Adaptor Protein-1. Viral interacting proteins were identified for 31/133 degraded host targets. Finally, the uncharacterised, non-canonical ORFL147C protein was found to interact with elements of the mRNA splicing machinery, and a mutational study suggested its importance in viral replication. The interactome data will be important for future studies of herpesvirus infection.

Data availability

All data analysed during this study are included in the manuscript and supporting files. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org/) via the PRIDE (Vizcaino et al., 2016) partner repository with the dataset identifier PXD014845.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Luis V Nobre

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Katie Nightingale

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin J Ravenhill

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Robin Antrobus

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lior Soday

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jenna Nichols

    MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. James A Davies

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3569-4500
  8. Sepehr Seirafian

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Eddie CY Wang

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Andrew J Davison

    MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Gavin WG Wilkinson

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5623-0126
  12. Richard J Stanton

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6799-1182
  13. Edward L Huttlin

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Michael P Weekes

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    mpw1001@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3196-5545

Funding

Wellcome (108070/Z/15/Z)

  • Michael P Weekes

Medical Research Council (MR/L018373/1)

  • Eddie CY Wang
  • Gavin WG Wilkinson
  • Richard J Stanton

Medical Research Council (MR/P001602/1)

  • Eddie CY Wang
  • Gavin WG Wilkinson
  • Richard J Stanton

Wellcome (WT090323MA)

  • Eddie CY Wang
  • Gavin WG Wilkinson
  • Richard J Stanton

Medical Research Council (MC_UU_12014/3)

  • Andrew J Davison

National Institutes of Health (U24 HG006673)

  • Edward L Huttlin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Nobre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,160
    views
  • 793
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luis V Nobre
  2. Katie Nightingale
  3. Benjamin J Ravenhill
  4. Robin Antrobus
  5. Lior Soday
  6. Jenna Nichols
  7. James A Davies
  8. Sepehr Seirafian
  9. Eddie CY Wang
  10. Andrew J Davison
  11. Gavin WG Wilkinson
  12. Richard J Stanton
  13. Edward L Huttlin
  14. Michael P Weekes
(2019)
Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions
eLife 8:e49894.
https://doi.org/10.7554/eLife.49894

Share this article

https://doi.org/10.7554/eLife.49894

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Sanjarbek Hudaiberdiev, Ivan Ovcharenko
    Research Article

    Enhancers and promoters are classically considered to be bound by a small set of transcription factors (TFs) in a sequence-specific manner. This assumption has come under increasing skepticism as the datasets of ChIP-seq assays of TFs have expanded. In particular, high-occupancy target (HOT) loci attract hundreds of TFs with often no detectable correlation between ChIP-seq peaks and DNA-binding motif presence. Here, we used a set of 1003 TF ChIP-seq datasets (HepG2, K562, H1) to analyze the patterns of ChIP-seq peak co-occurrence in combination with functional genomics datasets. We identified 43,891 HOT loci forming at the promoter (53%) and enhancer (47%) regions. HOT promoters regulate housekeeping genes, whereas HOT enhancers are involved in tissue-specific process regulation. HOT loci form the foundation of human super-enhancers and evolve under strong negative selection, with some of these loci being located in ultraconserved regions. Sequence-based classification analysis of HOT loci suggested that their formation is driven by the sequence features, and the density of mapped ChIP-seq peaks across TF-bound loci correlates with sequence features and the expression level of flanking genes. Based on the affinities to bind to promoters and enhancers we detected five distinct clusters of TFs that form the core of the HOT loci. We report an abundance of HOT loci in the human genome and a commitment of 51% of all TF ChIP-seq binding events to HOT locus formation thus challenging the classical model of enhancer activity and propose a model of HOT locus formation based on the existence of large transcriptional condensates.