Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions

  1. Luis V Nobre
  2. Katie Nightingale
  3. Benjamin J Ravenhill
  4. Robin Antrobus
  5. Lior Soday
  6. Jenna Nichols
  7. James A Davies
  8. Sepehr Seirafian
  9. Eddie CY Wang
  10. Andrew J Davison
  11. Gavin WG Wilkinson
  12. Richard J Stanton
  13. Edward L Huttlin
  14. Michael P Weekes  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. MRC-University of Glasgow Centre for Virus Research, United Kingdom
  3. Cardiff University School of Medicine, United Kingdom
  4. Harvard Medical School, United States

Abstract

Human cytomegalovirus (HCMV) extensively modulates host cells, downregulating >900 human proteins during viral replication and degrading ≥133 proteins shortly after infection. The mechanism of degradation of most host proteins remains unresolved, and the functions of many viral proteins are incompletely characterised. We performed a mass spectrometry-based interactome analysis of 169 tagged, stably-expressed canonical strain Merlin HCMV proteins, and two non-canonical HCMV proteins, in infected cells. This identified a network of >3,400 virus-host and >150 virus-virus protein interactions, providing insights into functions for multiple viral genes. Domain analysis predicted binding of the viral UL25 protein to SH3 domains of NCK Adaptor Protein-1. Viral interacting proteins were identified for 31/133 degraded host targets. Finally, the uncharacterised, non-canonical ORFL147C protein was found to interact with elements of the mRNA splicing machinery, and a mutational study suggested its importance in viral replication. The interactome data will be important for future studies of herpesvirus infection.

Data availability

All data analysed during this study are included in the manuscript and supporting files. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org/) via the PRIDE (Vizcaino et al., 2016) partner repository with the dataset identifier PXD014845.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Luis V Nobre

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Katie Nightingale

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin J Ravenhill

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Robin Antrobus

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lior Soday

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jenna Nichols

    MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. James A Davies

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3569-4500
  8. Sepehr Seirafian

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Eddie CY Wang

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Andrew J Davison

    MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Gavin WG Wilkinson

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5623-0126
  12. Richard J Stanton

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6799-1182
  13. Edward L Huttlin

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Michael P Weekes

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    mpw1001@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3196-5545

Funding

Wellcome (108070/Z/15/Z)

  • Michael P Weekes

Medical Research Council (MR/L018373/1)

  • Eddie CY Wang
  • Gavin WG Wilkinson
  • Richard J Stanton

Medical Research Council (MR/P001602/1)

  • Eddie CY Wang
  • Gavin WG Wilkinson
  • Richard J Stanton

Wellcome (WT090323MA)

  • Eddie CY Wang
  • Gavin WG Wilkinson
  • Richard J Stanton

Medical Research Council (MC_UU_12014/3)

  • Andrew J Davison

National Institutes of Health (U24 HG006673)

  • Edward L Huttlin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Piet Maes, KU Leuven, Rega Institute for Medical Research, Belgium

Version history

  1. Received: July 3, 2019
  2. Accepted: December 24, 2019
  3. Accepted Manuscript published: December 24, 2019 (version 1)
  4. Version of Record published: January 14, 2020 (version 2)

Copyright

© 2019, Nobre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,962
    views
  • 782
    downloads
  • 80
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luis V Nobre
  2. Katie Nightingale
  3. Benjamin J Ravenhill
  4. Robin Antrobus
  5. Lior Soday
  6. Jenna Nichols
  7. James A Davies
  8. Sepehr Seirafian
  9. Eddie CY Wang
  10. Andrew J Davison
  11. Gavin WG Wilkinson
  12. Richard J Stanton
  13. Edward L Huttlin
  14. Michael P Weekes
(2019)
Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions
eLife 8:e49894.
https://doi.org/10.7554/eLife.49894

Share this article

https://doi.org/10.7554/eLife.49894

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.