Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions

  1. Luis V Nobre
  2. Katie Nightingale
  3. Benjamin J Ravenhill
  4. Robin Antrobus
  5. Lior Soday
  6. Jenna Nichols
  7. James A Davies
  8. Sepehr Seirafian
  9. Eddie CY Wang
  10. Andrew J Davison
  11. Gavin WG Wilkinson
  12. Richard J Stanton
  13. Edward L Huttlin
  14. Michael P Weekes  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. MRC-University of Glasgow Centre for Virus Research, United Kingdom
  3. Cardiff University School of Medicine, United Kingdom
  4. Harvard Medical School, United States

Abstract

Human cytomegalovirus (HCMV) extensively modulates host cells, downregulating >900 human proteins during viral replication and degrading ≥133 proteins shortly after infection. The mechanism of degradation of most host proteins remains unresolved, and the functions of many viral proteins are incompletely characterised. We performed a mass spectrometry-based interactome analysis of 169 tagged, stably-expressed canonical strain Merlin HCMV proteins, and two non-canonical HCMV proteins, in infected cells. This identified a network of >3,400 virus-host and >150 virus-virus protein interactions, providing insights into functions for multiple viral genes. Domain analysis predicted binding of the viral UL25 protein to SH3 domains of NCK Adaptor Protein-1. Viral interacting proteins were identified for 31/133 degraded host targets. Finally, the uncharacterised, non-canonical ORFL147C protein was found to interact with elements of the mRNA splicing machinery, and a mutational study suggested its importance in viral replication. The interactome data will be important for future studies of herpesvirus infection.

Data availability

All data analysed during this study are included in the manuscript and supporting files. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org/) via the PRIDE (Vizcaino et al., 2016) partner repository with the dataset identifier PXD014845.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Luis V Nobre

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Katie Nightingale

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin J Ravenhill

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Robin Antrobus

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lior Soday

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Jenna Nichols

    MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. James A Davies

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3569-4500
  8. Sepehr Seirafian

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Eddie CY Wang

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Andrew J Davison

    MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Gavin WG Wilkinson

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5623-0126
  12. Richard J Stanton

    Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6799-1182
  13. Edward L Huttlin

    Department of Cell Biology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Michael P Weekes

    Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    mpw1001@cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3196-5545

Funding

Wellcome (108070/Z/15/Z)

  • Michael P Weekes

Medical Research Council (MR/L018373/1)

  • Eddie CY Wang
  • Gavin WG Wilkinson
  • Richard J Stanton

Medical Research Council (MR/P001602/1)

  • Eddie CY Wang
  • Gavin WG Wilkinson
  • Richard J Stanton

Wellcome (WT090323MA)

  • Eddie CY Wang
  • Gavin WG Wilkinson
  • Richard J Stanton

Medical Research Council (MC_UU_12014/3)

  • Andrew J Davison

National Institutes of Health (U24 HG006673)

  • Edward L Huttlin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Nobre et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,343
    views
  • 808
    downloads
  • 89
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luis V Nobre
  2. Katie Nightingale
  3. Benjamin J Ravenhill
  4. Robin Antrobus
  5. Lior Soday
  6. Jenna Nichols
  7. James A Davies
  8. Sepehr Seirafian
  9. Eddie CY Wang
  10. Andrew J Davison
  11. Gavin WG Wilkinson
  12. Richard J Stanton
  13. Edward L Huttlin
  14. Michael P Weekes
(2019)
Human cytomegalovirus interactome analysis identifies degradation hubs, domain associations and viral protein functions
eLife 8:e49894.
https://doi.org/10.7554/eLife.49894

Share this article

https://doi.org/10.7554/eLife.49894

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.