Abstract

Inflammatory bowel disease (IBD) affects 1.5-3.0 million people in the United States. IBD is genetically determined and many common risk alleles have been identified. Yet, a large proportion of genetic predisposition remains unexplained. In this study we report the identification of an ultrarare missense variant (NM_006998.3:c.230G>A;p.Arg77His) in the SCGN gene causing Mendelian early-onset ulcerative colitis. SCGN encodes a calcium sensor that is exclusively expressed in neuroendocrine lineages, including enteroendocrine cells and gut neurons. SCGN interacts with the SNARE complex, which is required for vesicle fusion with the plasma membrane. We show that the SCGN mutation identified impacted the localization of the SNARE complex partner, SNAP25, leading to impaired hormone release. Finally, we show that mouse models of Scgn deficiency recapitulate impaired hormone release and susceptibility to DSS-induced colitis. Altogether, these studies demonstrate that functional deficiency in SCGN can result in intestinal inflammation and implicates the neuroendocrine cellular compartment in IBD.

Data availability

Sequencing data have been deposited in GEO under accession code GSE134202.data generated during this study is included in the manuscript.

The following data sets were generated

Article and author information

Author details

  1. Luis F Sifuentes-Dominguez

    Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9525-071X
  2. Haiying Li

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ernesto Llano

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhe Liu

    Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Inn, Sichuan University, Chendu, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Amika Singla

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ashish S Patel

    Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mahesh Kathania

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Areen Khoury

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nicholas Norris

    Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jonathan J Rios

    Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Petro Starokadomskyy

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jason Y Park

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Purva Gopal

    Department of Pathology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Qi Liu

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Shuai Tan

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Lillienne Chan

    Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Theodora Ross

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Steven Harrison

    Department of Urology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  19. K Venuprasad

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  20. Linda A Baker

    Department of Urology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8272-4886
  21. Da Jia

    Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Inn, Sichuan University, Chendu, China
    Competing interests
    The authors declare that no competing interests exist.
  22. Ezra Burstein

    Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    ezra.burstein@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4341-6367

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (5 K12 HD-068369-05)

  • Luis F Sifuentes-Dominguez

Children's Health Clinical Research Advisory Committee (195)

  • Luis F Sifuentes-Dominguez

National Institute of Diabetes and Digestive and Kidney Diseases (DK105068)

  • Linda A Baker

National Center for Advancing Translational Sciences (UL1TR001105)

  • Jonathan J Rios

Natural Science Foundation of China (91854121)

  • Da Jia

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Murine studies were approved by the UT Southwestern Institutional Animal Care and Use Committee under study number APN 102011. All zebrafish (Danio rerio) experiments were performed according to standard procedures, and were performed in accordance with the guidelines of the animal ethical committee of Sichuan University.

Human subjects: All human studies were carried out in accordance with UT Southwestern Medical Center institutional review board guidelines under an approved protocol (STU 112010-130). All subjects agreed to participation and written informed consent was obtained from all participants or legal guardians. Assent was obtained from individuals older than 10 years of age at time of enrollment.

Copyright

© 2019, Sifuentes-Dominguez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,427
    views
  • 364
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luis F Sifuentes-Dominguez
  2. Haiying Li
  3. Ernesto Llano
  4. Zhe Liu
  5. Amika Singla
  6. Ashish S Patel
  7. Mahesh Kathania
  8. Areen Khoury
  9. Nicholas Norris
  10. Jonathan J Rios
  11. Petro Starokadomskyy
  12. Jason Y Park
  13. Purva Gopal
  14. Qi Liu
  15. Shuai Tan
  16. Lillienne Chan
  17. Theodora Ross
  18. Steven Harrison
  19. K Venuprasad
  20. Linda A Baker
  21. Da Jia
  22. Ezra Burstein
(2019)
SCGN deficiency results in colitis susceptibility
eLife 8:e49910.
https://doi.org/10.7554/eLife.49910

Share this article

https://doi.org/10.7554/eLife.49910

Further reading

    1. Genetics and Genomics
    Jake D Lehle, Yu-Huey Lin ... John R McCarrey
    Research Article

    Endocrine disrupting chemicals (EDCs) such as bisphenol S (BPS) are xenobiotic compounds that can disrupt endocrine signaling due to steric similarities to endogenous hormones. EDCs have been shown to induce disruptions in normal epigenetic programming (epimutations) and differentially expressed genes (DEGs) that predispose disease states. Most interestingly, the prevalence of epimutations following exposure to many EDCs persists over multiple generations. Many studies have described direct and prolonged effects of EDC exposure in animal models, but many questions remain about molecular mechanisms by which EDC-induced epimutations are introduced or subsequently propagated, whether there are cell type-specific susceptibilities to the same EDC, and whether this correlates with differential expression of relevant hormone receptors. We exposed cultured pluripotent (iPS), somatic (Sertoli and granulosa), and primordial germ cell-like (PGCLC) cells to BPS and found that differential incidences of BPS-induced epimutations and DEGs correlated with differential expression of relevant hormone receptors inducing epimutations near relevant hormone response elements in somatic and pluripotent, but not germ cell types. Most interestingly, we found that when iPS cells were exposed to BPS and then induced to differentiate into PGCLCs, the prevalence of epimutations and DEGs was largely retained, however, >90% of the specific epimutations and DEGs were replaced by novel epimutations and DEGs. These results suggest a unique mechanism by which an EDC-induced epimutated state may be propagated transgenerationally.

    1. Genetics and Genomics
    Shaohua Gu, Yuanzhe Shao ... Zhiyuan Li
    Research Article

    Microbial secondary metabolites are a rich source for pharmaceutical discoveries and play crucial ecological functions. While tools exist to identify secondary metabolite clusters in genomes, precise sequence-to-function mapping remains challenging because neither function nor substrate specificity of biosynthesis enzymes can accurately be predicted. Here, we developed a knowledge-guided bioinformatic pipeline to solve these issues. We analyzed 1928 genomes of Pseudomonas bacteria and focused on iron-scavenging pyoverdines as model metabolites. Our pipeline predicted 188 chemically different pyoverdines with nearly 100% structural accuracy and the presence of 94 distinct receptor groups required for the uptake of iron-loaded pyoverdines. Our pipeline unveils an enormous yet overlooked diversity of siderophores (151 new structures) and receptors (91 new groups). Our approach, combining feature sequence with phylogenetic approaches, is extendable to other metabolites and microbial genera, and thus emerges as powerful tool to reconstruct bacterial secondary metabolism pathways based on sequence data.