Cholesterol accessibility at the ciliary membrane controls Hedgehog signaling

  1. Maia Kinnebrew
  2. Ellen Jean Iverson
  3. Bhaven B Patel
  4. Ganesh V Pusapati
  5. Jennifer H Kong
  6. Kristen A Johnson
  7. Giovanni Luchetti
  8. Kaitlyn M Eckert
  9. Jeffrey G McDonald
  10. Douglas F Covey
  11. Christian Siebold
  12. Arun Radhakrishnan  Is a corresponding author
  13. Rajat Rohatgi  Is a corresponding author
  1. Stanford University School of Medicine, United States
  2. Stanford University School of medicine, United States
  3. University of Texas Southwestern Medical Center, United States
  4. Washington University School of Medicine, United States
  5. University of Oxford, United Kingdom

Abstract

Previously we proposed that transmission of the Hedgehog signal across the plasma membrane by Smoothened is triggered by its interaction with cholesterol (Luchetti et al., 2016). But how is cholesterol, an abundant lipid, regulated tightly enough to control a signaling system that can cause birth defects and cancer? Using toxin-based sensors that distinguish between distinct pools of cholesterol, we find that Smoothened activation and Hedgehog signaling are driven by a biochemically-defined, small fraction of membrane cholesterol, termed accessible cholesterol. Increasing cholesterol accessibility by depletion of sphingomyelin, which sequesters cholesterol in complexes, amplifies Hedgehog signaling. Hedgehog ligands increase cholesterol accessibility in the membrane of the primary cilium by inactivating the transporter-like protein Patched 1. Trapping this accessible cholesterol blocks Hedgehog signal transmission across the membrane. Our work shows that the organization of cholesterol in the ciliary membrane can be modified by extracellular ligands to control the activity of cilia-localized signaling proteins.

Data availability

All data generated or analyzed are included in Supplementary Files 1-5 in this manuscript.

Article and author information

Author details

  1. Maia Kinnebrew

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7344-8231
  2. Ellen Jean Iverson

    Department of Biochemistry, Stanford University School of medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  3. Bhaven B Patel

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Ganesh V Pusapati

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Jennifer H Kong

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  6. Kristen A Johnson

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  7. Giovanni Luchetti

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    Competing interests
    No competing interests declared.
  8. Kaitlyn M Eckert

    Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  9. Jeffrey G McDonald

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  10. Douglas F Covey

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  11. Christian Siebold

    Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6635-3621
  12. Arun Radhakrishnan

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    arun.radhakrishnan@utsouthwestern.edu
    Competing interests
    Arun Radhakrishnan, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7266-7336
  13. Rajat Rohatgi

    Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
    For correspondence
    rrohatgi@stanford.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7609-8858

Funding

National Institutes of Health (GM118082)

  • Rajat Rohatgi

American Heart Association (14POST20370057)

  • Ganesh V Pusapati

American Heart Association (19POST34380734)

  • Jennifer H Kong

National Institutes of Health (GM13251801)

  • Jennifer H Kong

Ford Foundation (Pre-doctoral Fellowship)

  • Giovanni Luchetti

National Institutes of Health (GM106078)

  • Rajat Rohatgi

National Institutes of Health (HL20948)

  • Kristen A Johnson
  • Jeffrey G McDonald
  • Arun Radhakrishnan

Welch Foundation (I-1793)

  • Kristen A Johnson
  • Arun Radhakrishnan

Cancer Research UK (C20724/A14414)

  • Christian Siebold

Cancer Research UK (C20724/A26752)

  • Christian Siebold

European Research Council (647278)

  • Christian Siebold

National Science Foundation (Pre-doctoral Fellowship)

  • Maia Kinnebrew

National Science Foundation (Pre-doctoral Fellowship)

  • Ellen Jean Iverson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Kinnebrew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,846
    views
  • 1,189
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maia Kinnebrew
  2. Ellen Jean Iverson
  3. Bhaven B Patel
  4. Ganesh V Pusapati
  5. Jennifer H Kong
  6. Kristen A Johnson
  7. Giovanni Luchetti
  8. Kaitlyn M Eckert
  9. Jeffrey G McDonald
  10. Douglas F Covey
  11. Christian Siebold
  12. Arun Radhakrishnan
  13. Rajat Rohatgi
(2019)
Cholesterol accessibility at the ciliary membrane controls Hedgehog signaling
eLife 8:e50051.
https://doi.org/10.7554/eLife.50051

Share this article

https://doi.org/10.7554/eLife.50051