1. Neuroscience
Download icon

Drosophila PSI controls circadian period and the phase of circadian behavior under temperature cycle via tim splicing

  1. Lauren Foley
  2. Jinli Ling
  3. Radhika Joshi
  4. Naveh Evantal
  5. Sebastian Kadener
  6. Patrick Emery  Is a corresponding author
  1. University of Massachusetts Medical School, United States
  2. The Hebrew University of Jerusalem, Israel
  3. Brandeis University, United States
Research Article
  • Cited 0
  • Views 148
  • Annotations
Cite this article as: eLife 2019;8:e50063 doi: 10.7554/eLife.50063

Abstract

The Drosophila circadian pacemaker consists of transcriptional feedback loops subjected to post-transcriptional and post-translational regulation. While post-translational regulatory mechanisms have been studied in detail, much less is known about circadian post-transcriptional control. Thus, we targeted 364 RNA binding and RNA associated proteins with RNA interference. Among the 43 hits we identified was the alternative splicing regulator P-element somatic inhibitor (PSI). PSI regulates the thermosensitive alternative splicing of timeless (tim), promoting splicing events favored at warm temperature over those increased at cold temperature. Psi downregulation shortens the period of circadian rhythms and advances the phase of circadian behavior under temperature cycle. Interestingly, both phenotypes were suppressed in flies that could produce TIM proteins only from a transgene that cannot form the thermosensitive splicing isoforms. Therefore, we conclude that PSI regulates the period of Drosophila circadian rhythms and circadian behavior phase during temperature cycling through its modulation of the tim splicing pattern.

Article and author information

Author details

  1. Lauren Foley

    Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jinli Ling

    Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Radhika Joshi

    Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Naveh Evantal

    Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Sebastian Kadener

    Biology Department, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0080-5987
  6. Patrick Emery

    Department of Neurobiology, University of Massachusetts Medical School, Worcester, United States
    For correspondence
    Patrick.Emery@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5176-6565

Funding

National Institute of General Medical Sciences (1R35GM118087)

  • Patrick Emery

National Institute of General Medical Sciences (1R01GM125859)

  • Sebastian Kadener

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Publication history

  1. Received: July 10, 2019
  2. Accepted: November 7, 2019
  3. Accepted Manuscript published: November 8, 2019 (version 1)

Copyright

© 2019, Foley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 148
    Page views
  • 29
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading