1. Neuroscience
Download icon

Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila

  1. Ane Martin Anduaga
  2. Naveh Evantal
  3. Ines Lucia Patop
  4. Osnat Bartok
  5. Ron Weiss
  6. Sebastian Kadener  Is a corresponding author
  1. Brandeis University, United States
  2. The Hebrew University of Jerusalem, Israel
Research Article
  • Cited 0
  • Views 373
  • Annotations
Cite this article as: eLife 2019;8:e44642 doi: 10.7554/eLife.44642

Abstract

Circadian rhythms are generated by cyclic transcription, translation, and degradation of clock gene products, including timeless (tim), but how the circadian clock senses and adapts to temperature changes is not completely understood. Here we show that temperature dramatically changes the splicing pattern of tim in Drosophila. We found that at 18 °C, TIM levels are low due to the induction of two cold-specific isoforms: tim-cold and tim-short&cold. At 29 °C, another isoform, tim-medium, is upregulated. This isoform switching regulates the levels and activity of TIM as each isoform has a specific function. We found that tim-short&cold encodes a protein that rescues the behavioral defects of tim01 mutants and that flies in which tim-short&cold is abrogated have abnormal locomotor activity. In addition, miRNA-mediated control limits the expression of some of these isoforms. Finally, our data using minigenes suggest that tim alternative splicing might act as a thermometer for the circadian clock.

Article and author information

Author details

  1. Ane Martin Anduaga

    Biology Department, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Naveh Evantal

    Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Ines Lucia Patop

    Biology Department, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Osnat Bartok

    Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Ron Weiss

    Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Sebastian Kadener

    Biology Department, Brandeis University, Waltham, United States
    For correspondence
    skadener@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0080-5987

Funding

National Institutes of Health (R01GM125859)

  • Sebastian Kadener

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mani Ramaswami, Trinity College Dublin, Ireland

Publication history

  1. Received: December 21, 2018
  2. Accepted: November 7, 2019
  3. Accepted Manuscript published: November 8, 2019 (version 1)

Copyright

© 2019, Martin Anduaga et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 373
    Page views
  • 71
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading