1. Cancer Biology
  2. Developmental Biology
Download icon

Coopted temporal patterning governs cellular hierarchy, heterogeneity and metabolism in Drosophila neuroblast tumors

  1. Sara Genovese
  2. Raphaël Clément
  3. Cassandra Gaultier
  4. Florence Besse
  5. Karine Narbonne-Reveau
  6. Fabrice Daian
  7. Sophie Foppolo
  8. Nuno Miguel Luis
  9. Cédric Maurange  Is a corresponding author
  1. Aix Marseille University, CNRS, France
  2. Université Côte d'Azur, CNRS, Inserm, France
Research Advance
  • Cited 3
  • Views 2,665
  • Annotations
Cite this article as: eLife 2019;8:e50375 doi: 10.7554/eLife.50375

Abstract

It is still unclear what drives progression of childhood tumors. During Drosophila larval development, asymmetrically-dividing neural stem cells, called neuroblasts, progress through an intrinsic temporal patterning program that ensures cessation of divisions before adulthood. We previously showed that temporal patterning also delineates an early developmental window during which neuroblasts are susceptible to tumor initiation (Narbonne-Reveau et al., 2016). Using single-cell transcriptomics, clonal analysis and numerical modeling, we now identify a network of twenty larval temporal patterning genes that are redeployed within neuroblast tumors to trigger a robust hierarchical division scheme that perpetuates growth while inducing predictable cell heterogeneity. Along the hierarchy, temporal patterning genes define a differentiation trajectory that regulates glucose metabolism genes to determine the proliferative properties of tumor cells. Thus, partial redeployment of the temporal patterning program encoded in the cell of origin may govern the hierarchy, heterogeneity and growth properties of neural tumors with a developmental origin.

Article and author information

Author details

  1. Sara Genovese

    Institut de Biologie du Développement de Marseille, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Raphaël Clément

    Institut de Biologie du Développement de Marseille, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Cassandra Gaultier

    Institut de Biologie du Développement de Marseille, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6401-9163
  4. Florence Besse

    Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4672-1068
  5. Karine Narbonne-Reveau

    Institut de Biologie du Développement de Marseille, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabrice Daian

    Institut de Biologie du Développement de Marseille, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Sophie Foppolo

    Institut de Biologie du Développement de Marseille, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Nuno Miguel Luis

    Institut de Biologie du Développement de Marseille, Aix Marseille University, CNRS, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5438-9638
  9. Cédric Maurange

    Institut de Biologie du Développement de Marseille, Aix Marseille University, CNRS, Marseille, France
    For correspondence
    cedric.maurange@univ-amu.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8931-1419

Funding

Fondation ARC pour la Recherche sur le Cancer (PJA20141201621)

  • Cédric Maurange

Fondation ARC pour la Recherche sur le Cancer

  • Sara Genovese

Canceropôle PACA

  • Cédric Maurange

Centre National de la Recherche Scientifique

  • Cédric Maurange

Aix-Marseille Université

  • Sara Genovese

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Cayetano Gonzalez, Institute for Research in Biomedicine, Spain

Publication history

  1. Received: July 24, 2019
  2. Accepted: September 29, 2019
  3. Accepted Manuscript published: September 30, 2019 (version 1)
  4. Version of Record published: October 14, 2019 (version 2)

Copyright

© 2019, Genovese et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,665
    Page views
  • 425
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    Yogev Sela et al.
    Short Report

    Cancer patients often harbor occult metastases, a potential source of relapse that is targetable only through systemic therapy. Studies of this occult fraction have been limited by a lack of tools with which to isolate discrete cells on spatial grounds. We developed PIC-IT, a photoconversion-based isolation technique allowing efficient recovery of cell clusters of any size – including single-metastatic cells – which are largely inaccessible otherwise. In a murine pancreatic cancer model, transcriptional profiling of spontaneously arising microcolonies revealed phenotypic heterogeneity, functionally reduced propensity to proliferate and enrichment for an inflammatory-response phenotype associated with NF-κB/AP-1 signaling. Pharmacological inhibition of NF-κB depleted microcolonies but had no effect on macrometastases, suggesting microcolonies are particularly dependent on this pathway. PIC-IT thus enables systematic investigation of metastatic heterogeneity. Moreover, the technique can be applied to other biological systems in which isolation and characterization of spatially distinct cell populations is not currently feasible.

    1. Cancer Biology
    2. Genetics and Genomics
    Iris E Glykofridis et al.
    Research Article Updated

    Germline mutations in the Folliculin (FLCN) tumor suppressor gene cause Birt–Hogg–Dubé (BHD) syndrome, a rare autosomal dominant disorder predisposing carriers to kidney tumors. FLCN is a conserved, essential gene linked to diverse cellular processes but the mechanism by which FLCN prevents kidney cancer remains unknown. Here, we show that disrupting FLCN in human renal tubular epithelial cells (RPTEC/TERT1) activates TFE3, upregulating expression of its E-box targets, including RRAGD and GPNMB, without modifying mTORC1 activity. Surprisingly, the absence of FLCN or its binding partners FNIP1/FNIP2 induces interferon response genes independently of interferon. Mechanistically, FLCN loss promotes STAT2 recruitment to chromatin and slows cellular proliferation. Our integrated analysis identifies STAT1/2 signaling as a novel target of FLCN in renal cells and BHD tumors. STAT1/2 activation appears to counterbalance TFE3-directed hyper-proliferation and may influence immune responses. These findings shed light on unique roles of FLCN in human renal tumorigenesis and pinpoint candidate prognostic biomarkers.