Abstract

Bacterial shape is physically determined by the peptidoglycan cell wall. The cell-wall-synthesis machinery responsible for rod shape in Escherichia coli is the processive 'Rod complex'. Previously, cytoplasmic MreB filaments were thought to govern formation and localization of Rod complexes based on local cell-envelope curvature. Using single-particle tracking of the transpeptidase and Rod-complex component PBP2, we found that PBP2 binds to a substrate different from MreB. Depletion and localization experiments of other putative Rod-complex components provide evidence that none of those provide the sole rate-limiting substrate for PBP2 binding. Consistently, we found only weak correlations between MreB and envelope curvature in the cylindrical part of cells. Residual correlations do not require curvature-based Rod-complex initiation but can be attributed to persistent rotational motion. We therefore speculate that the local cell-wall architecture provides the cue for Rod-complex initiation, either through direct binding by PBP2 or through an unknown intermediate.

Data availability

All data generated or analysed during this study are included in supplemental datasets provided for each figure. Source data, specifically raw tracks, are provided as Source Data File (one file with x-, y- coordinates and track identifier per replicate).

Article and author information

Author details

  1. Gizem Özbaykal

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Eva Wollrab

    Department of Microbiology, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Francois Simon

    Department of Microbiology, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Antoine Vigouroux

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8398-5073
  5. Baptiste Cordier

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Andrey Aristov

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Thibault Chaze

    Proteomics Platform, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Mariette Matondo

    Proteomics Platform, Institut Pasteur, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Sven van Teeffelen

    Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
    For correspondence
    sven.vanteeffelen@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0877-1294

Funding

H2020 European Research Council (679980)

  • Sven van Teeffelen

Agence Nationale de la Recherche (ANR-10-LABX-62-IBEID)

  • Sven van Teeffelen

Volkswagen Foundation

  • Sven van Teeffelen

Mairie de Paris

  • Sven van Teeffelen

Prestige Postdoctoral Fellowship

  • Eva Wollrab

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tâm Mignot, CNRS-Aix Marseille University, France

Version history

  1. Received: July 28, 2019
  2. Accepted: February 19, 2020
  3. Accepted Manuscript published: February 20, 2020 (version 1)
  4. Version of Record published: March 23, 2020 (version 2)

Copyright

© 2020, Özbaykal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,255
    views
  • 385
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gizem Özbaykal
  2. Eva Wollrab
  3. Francois Simon
  4. Antoine Vigouroux
  5. Baptiste Cordier
  6. Andrey Aristov
  7. Thibault Chaze
  8. Mariette Matondo
  9. Sven van Teeffelen
(2020)
The transpeptidase PBP2 governs initial localization and activity of the major cell-wall synthesis machinery in E. coli
eLife 9:e50629.
https://doi.org/10.7554/eLife.50629

Share this article

https://doi.org/10.7554/eLife.50629

Further reading

    1. Microbiology and Infectious Disease
    Alejandro Prieto, Luïsa Miró ... Antonio Juarez
    Research Article

    Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.

    1. Microbiology and Infectious Disease
    Hideo Fukuhara, Kohei Yumoto ... Katsumi Maenaka
    Research Article

    Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.