1. Physics of Living Systems
Download icon

Stochastic yield catastrophes and robustness in self-assembly

  1. Florian M Gartner
  2. Isabella R Graf
  3. Patrick Wilke
  4. Philipp M Geiger
  5. Erwin Frey  Is a corresponding author
  1. Ludwig-Maximilians-Universität München, Germany
Research Article
  • Cited 0
  • Views 316
  • Annotations
Cite this article as: eLife 2020;9:e51020 doi: 10.7554/eLife.51020

Abstract

A guiding principle in self-assembly is that, for high production yield, nucleation of structures must be significantly slower than their growth. However, details of the mechanism that impedes nucleation are broadly considered irrelevant. Here, we analyze self-assembly into finite-sized target structures employing mathematical modeling. We investigate two key scenarios to delay nucleation: (i) by introducing a slow activation step for the assembling constituents and, (ii) by decreasing the dimerization rate. These scenarios have widely different characteristics. While the dimerization scenario exhibits robust behavior, the activation scenario is highly sensitive to demographic fluctuations. These demographic fluctuations ultimately disfavor growth compared to nucleation and can suppress yield completely. The occurrence of this stochastic yield catastrophe does not depend on model details but is generic as soon as number fluctuations between constituents are taken into account. On a broader perspective, our results reveal that stochasticity is an important limiting factor for self-assembly and that the specific implementation of the nucleation process plays a significant role in determining the yield.

Article and author information

Author details

  1. Florian M Gartner

    Arnold-Sommerfeld-Center for Theoretial Physics, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Isabella R Graf

    Arnold-Sommerfeld-Center for Theoretial Physics, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Patrick Wilke

    Arnold-Sommerfeld-Center for Theoretial Physics, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Philipp M Geiger

    Arnold-Sommerfeld-Center for Theoretial Physics, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Erwin Frey

    Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München, München, Germany
    For correspondence
    frey@lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8792-3358

Funding

Deutsche Forschungsgemeinschaft (GRK2062)

  • Patrick Wilke

Deutsche Forschungsgemeinschaft (QBM)

  • Florian M Gartner
  • Isabella R Graf

Aspen Center for Physics (PHY-160761)

  • Erwin Frey

Deutsche Forschungsgemeinschaft (EXC-2094 - 390783311)

  • Erwin Frey

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Frank Jülicher, Max Planck Institute for the Physics of Complex Systems, Germany

Publication history

  1. Received: August 12, 2019
  2. Accepted: February 4, 2020
  3. Accepted Manuscript published: February 5, 2020 (version 1)

Copyright

© 2020, Gartner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 316
    Page views
  • 63
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)