Notochord vacuoles absorb compressive bone growth during zebrafish spine formation
Abstract
The vertebral column or spine assembles around the notochord rod which contains a core made of large vacuolated cells. Each vacuolated cell possesses a single fluid-filled vacuole, and loss or fragmentation of these vacuoles in zebrafish leads to spine kinking. Here, we identified a mutation in the kinase gene dstyk that causes fragmentation of notochord vacuoles and a severe congenital scoliosis-like phenotype in zebrafish. Live imaging revealed that Dstyk regulates fusion of membranes with the vacuole. We find that localized disruption of notochord vacuoles causes vertebral malformation and curving of the spine axis at those sites. Accordingly, in dstyk mutants the spine curves increasingly over time as vertebral bone formation compresses the notochord asymmetrically, causing vertebral malformations and kinking of the axis. Together, our data show that notochord vacuoles function as a hydrostatic scaffold that guides symmetrical growth of vertebrae and spine formation.
Data availability
All data generated or analyses during this study are included in the manuscript and supporting files. Source data files have been provided as indicated. Data has been deposited to Dryad, under the DOI: 10.5061/dryad.73n5tb2tb. Due to their large size, raw image files can be accessed upon request.
-
Data from: Notochord vacuoles absorb compressive bone growth during zebrafish spine formationDryad Digital Repository, doi:10.5061/dryad.73n5tb2tb.
Article and author information
Author details
Funding
National Institutes of Health (R01AR065439)
- Michel Bagnat
Howard Hughes Medical Institute (Faculty Scholars)
- Michel Bagnat
National Institutes of Health (R01HL54737)
- Didier YR Stainier
National Institutes of Health (R00GM105874 and R03HD091634)
- Sarah K McMenamin
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: Zebrafish (Danio rerio) were used in accordance with Duke University Institutional Animal Care and Use Committee (IACUC) guidelines and approved under our animal protocol A089-17-04
Copyright
© 2020, Bagwell et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 5,431
- views
-
- 714
- downloads
-
- 45
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.
-
- Cell Biology
- Developmental Biology
In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.