Notochord vacuoles absorb compressive bone growth during zebrafish spine formation

  1. Jennifer Bagwell
  2. James Norman
  3. Kathryn L Ellis
  4. Brianna Peskin
  5. James Hwang
  6. Xiaoyan Ge
  7. Stacy Nguyen
  8. Sarah K McMenamin
  9. Didier YR Stainier
  10. Michel Bagnat  Is a corresponding author
  1. Duke University, United States
  2. University of California, San Francisco, United States
  3. Boston College, United States
  4. Max Planck Institute for Heart and Lung Research, Germany
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/51221/elife-51221-supp-v1.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jennifer Bagwell
  2. James Norman
  3. Kathryn L Ellis
  4. Brianna Peskin
  5. James Hwang
  6. Xiaoyan Ge
  7. Stacy Nguyen
  8. Sarah K McMenamin
  9. Didier YR Stainier
  10. Michel Bagnat
(2020)
Notochord vacuoles absorb compressive bone growth during zebrafish spine formation
eLife 9:e51221.
https://doi.org/10.7554/eLife.51221