A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture

  1. Alfredo Llorca
  2. Gabriele Ciceri
  3. Robert Beattie
  4. Fong Kuan Wong
  5. Giovanni Diana
  6. Eleni Serafeimidou-Pouliou
  7. Marian Fernández-Otero
  8. Carmen Streicher
  9. Sebastian J Arnold
  10. Martin Meyer
  11. Simon Hippenmeyer
  12. Miguel Maravall
  13. Oscar Marin  Is a corresponding author
  1. King's College London, United Kingdom
  2. Institute of Science and Technology Austria, Austria
  3. University of Freiburg, Germany
  4. University of Sussex, United Kingdom

Abstract

The cerebral cortex contains multiple areas with distinctive cytoarchitectonical patterns, but the cellular mechanisms underlying the emergence of this diversity remain unclear. Here, we have investigated the neuronal output of individual progenitor cells in the developing mouse neocortex using a combination of methods that together circumvent the biases and limitations of individual approaches. Our experimental results indicate that progenitor cells generate pyramidal cell lineages with a wide range of sizes and laminar configurations. Mathematical modelling indicates that these outcomes are compatible with a stochastic model of cortical neurogenesis in which progenitor cells undergo a series of probabilistic decisions that lead to the specification of very heterogeneous progenies. Our findings support a mechanism for cortical neurogenesis whose flexibility would make it capable to generate the diverse cytoarchitectures that characterize distinct neocortical areas.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Alfredo Llorca

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Gabriele Ciceri

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Robert Beattie

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Fong Kuan Wong

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Giovanni Diana

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7497-5271
  6. Eleni Serafeimidou-Pouliou

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Marian Fernández-Otero

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Carmen Streicher

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian J Arnold

    Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Freiburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Martin Meyer

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Simon Hippenmeyer

    Institute of Science and Technology Austria, Klosterneuburg, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2279-1061
  12. Miguel Maravall

    Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8869-7206
  13. Oscar Marin

    Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
    For correspondence
    oscar.marin@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6264-7027

Funding

H2020 European Research Council (ERC-2017-AdG 787355)

  • Oscar Marin

H2020 European Research Council (ERC-2016-CoG 725780)

  • Simon Hippenmeyer

European Molecular Biology Organization

  • Fong Kuan Wong

H2020 Marie Skłodowska-Curie Actions

  • Fong Kuan Wong

Austrian Science Fund (Lise-Meitner program M 2416)

  • Robert Beattie

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by King's College London and IST Austria, and were performed under UK Home Office project licenses, and in accordance with Austrian Federal Ministry of Science and Research license, and European regulations (EU directive 86/609, EU decree 2001- 486).

Copyright

© 2019, Llorca et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,937
    views
  • 1,188
    downloads
  • 87
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alfredo Llorca
  2. Gabriele Ciceri
  3. Robert Beattie
  4. Fong Kuan Wong
  5. Giovanni Diana
  6. Eleni Serafeimidou-Pouliou
  7. Marian Fernández-Otero
  8. Carmen Streicher
  9. Sebastian J Arnold
  10. Martin Meyer
  11. Simon Hippenmeyer
  12. Miguel Maravall
  13. Oscar Marin
(2019)
A stochastic framework of neurogenesis underlies the assembly of neocortical cytoarchitecture
eLife 8:e51381.
https://doi.org/10.7554/eLife.51381

Share this article

https://doi.org/10.7554/eLife.51381

Further reading

    1. Developmental Biology
    2. Neuroscience
    Xingsen Zhao, Qihang Sun ... Xuekun Li
    Research Article

    Williams syndrome (WS; OMIM#194050) is a rare disorder, which is caused by the microdeletion of one copy of 25–27 genes, and WS patients display diverse neuronal deficits. Although remarkable progresses have been achieved, the mechanisms for these distinct deficits are still largely unknown. Here, we have shown that neural progenitor cells (NPCs) in WS forebrain organoids display abnormal proliferation and differentiation capabilities, and synapse formation. Genes with altered expression are related to neuronal development and neurogenesis. Single cell RNA-seq (scRNA-seq) data analysis revealed 13 clusters in healthy control and WS organoids. WS organoids show an aberrant generation of excitatory neurons. Mechanistically, the expression of transthyretin (TTR) are remarkably decreased in WS forebrain organoids. We have found that GTF2IRD1 encoded by one WS associated gene GTF2IRD1 binds to TTR promoter regions and regulates the expression of TTR. In addition, exogenous TTR can activate ERK signaling and rescue neurogenic deficits of WS forebrain organoids. Gtf2ird1-deficient mice display similar neurodevelopmental deficits as observed in WS organoids. Collectively, our study reveals critical function of GTF2IRD1 in regulating neurodevelopment of WS forebrain organoids and mice through regulating TTR-ERK pathway.

    1. Developmental Biology
    Laurel A Rohde, Arianne Bercowsky-Rama ... Andrew C Oates
    Research Article

    Rhythmic and sequential segmentation of the growing vertebrate body relies on the segmentation clock, a multi-cellular oscillating genetic network. The clock is visible as tissue-level kinematic waves of gene expression that travel through the presomitic mesoderm (PSM) and arrest at the position of each forming segment. Here, we test how this hallmark wave pattern is driven by culturing single maturing PSM cells. We compare their cell-autonomous oscillatory and arrest dynamics to those we observe in the embryo at cellular resolution, finding similarity in the relative slowing of oscillations and arrest in concert with differentiation. This shows that cell-extrinsic signals are not required by the cells to instruct the developmental program underlying the wave pattern. We show that a cell-autonomous timing activity initiates during cell exit from the tailbud, then runs down in the anterior-ward cell flow in the PSM, thereby using elapsed time to provide positional information to the clock. Exogenous FGF lengthens the duration of the cell-intrinsic timer, indicating extrinsic factors in the embryo may regulate the segmentation clock via the timer. In sum, our work suggests that a noisy cell-autonomous, intrinsic timer drives the slowing and arrest of oscillations underlying the wave pattern, while extrinsic factors in the embryo tune this timer’s duration and precision. This is a new insight into the balance of cell-intrinsic and -extrinsic mechanisms driving tissue patterning in development.