Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila

  1. Katrin Kierdorf  Is a corresponding author
  2. Fabian Hersperger
  3. Jessica Sharrock
  4. Crystal M Vincent
  5. Pinar Ustaoglu
  6. Jiawen Dou
  7. Attila Gyoergy
  8. Olaf Groß
  9. Daria E Siekhaus
  10. Marc S Dionne  Is a corresponding author
  1. Imperial College London, United Kingdom
  2. University of Freiburg, Germany
  3. Institute of Science and Technology, Austria
4 figures, 1 table and 1 additional file

Figures

Figure 1 with 1 supplement
Dome inhibition in adult muscle reduces lifespan, disrupts homeostasis, and causes AKT hyperactivation.

(A) STAT activity in different muscles in 10xSTAT92E-GFP reporter fly. One fly out of 5 shown. Upper panel: lateral view, Scale bar = 500 µm. Lower panels: dorsal thorax (left); dorsal abdomen (middle); tibia (right), Scale bar = 100 µm. (B) Lifespan of 24B-Gal80ts/+ and 24B-Gal80ts > dome at 29°C. Log-Rank test: χ2 = 166, ***p<0.0001; Wilcoxon test: χ2 = 157.7, ***p<0.0001. (C) Negative geotaxis assay of 14-day-old 24B-Gal80ts/+ and 24B-Gal80ts > dome flies. Points represent mean height climbed in individual vials (~20 flies/vial), pooled from three independent experiments. Unpaired T-test: **p=0.0033. (D) Muscle (Phalloidin) and neutral lipid (LipidTox) of thorax samples from 14-day-old 24B-Gal80ts/+ and 24B-Gal80ts > dome flies. One representative fly per genotype is shown of six analysed. Scale bar = 50 µm. (E) Thin layer chromatography (TLC) of triglycerides in 7-day-old 24B-Gal80ts/+ and 24B-Gal80ts > dome flies, n = 3–4 per genotype. One experiment of two is shown. Unpaired T-Test: ***p<0.0001. (F) Glucose and trehalose (left) and glycogen (right) in 7-day-old 24B-Gal80ts/+ and 24B-Gal80ts > dome flies, pooled from two independent experiments. Unpaired T-Test (Glucose +Trehalose): ***p<0.0001 and unpaired T-Test (Glycogen): ***p<0.0001. (G) CO2 produced, O2 consumed, and RQ of 7-day-old 24B-Gal80ts/+ and 24B-Gal80ts > dome flies. Box plots show data from one representative experiment of three, with data collected from a 24 hr measurement pooled from 3 to 4 tubes per genotype with 10 flies/tube. P values from Mann-Whitney test. (H–L) Western blots of leg protein from 14-day-old 24B-Gal80ts/+ and 24B-Gal80ts > dome flies. (H) Phospho-AKT (S505). One experiment of four is shown. Unpaired T-Test: ***p<0.0001. (I) Total AKT. One experiment of two is shown. Unpaired T-Test: **p=0.0017. (J) Phospho-p70 S6K (T398). One experiment of two is shown. Unpaired T-Test: ns p=0.0539. (K) Phospho-AMPKα (T173). One experiment of three is shown. Unpaired T-Test: ns p=0.1024. (L) Phospho-ERK (T202/Y204). One experiment of three is shown. Unpaired T-Test: ns p=0.0826.

Figure 1—figure supplement 1
Further characterisation of the requirement for dome in adult muscle.

(A) STAT activity (10xSTAT92E-GFP) and muscle (MHC-RFP) colocalize in adult flies. One fly of 6 shown. Scale bar = 500 µm. (B) dome expression by qRT-PCR in thorax samples from 14-day-old 24B-Gal80ts/+ and 24B-Gal80ts > dome flies. Unpaired T-Test: *p=0.0102. (C) Lifespan of UAS-dome/+ and 24B-Gal80ts > dome at 29°C. Log-Rank test: χ2 = 100.8, ***p<0.0001; Wilcoxon test: χ2 = 76.2, ***p<0.0001. (D) Lifespan of 24B-Gal80ts/+ and 24B-Gal80ts > dome at 25°C. Log-Rank test: χ2 = 61.83, ***p<0.0001; Wilcoxon test: χ2 = 55.18, ***p<0.0001. (E) Smurf assay of 14-day-old 24B-Gal80ts/+ (n = 49) and 24B-Gal80ts-dome flies (n = 18). Data pooled from two independent experiments. (F) Lifespan of Mef2-Gal80ts/+ and Mef2-Gal80ts > dome flies at 29°C. Log-Rank test: χ2 = 86.96, ***p<0.0001; Wilcoxon test: χ2 = 78.61, ***p<0.0001. (G) Negative geotaxis assay of 14-day-old Mef2-Gal80ts/+ and Mef2-Gal80ts > dome flies. Points represent mean climbing height of individual vials analysed (~20 flies/vial), pooled from three independent experiments. Unpaired T-Test: ***p<0.0001. (H, I) Western blots of protein from legs of 14-day-old Mef2-Gal80ts/+ and Mef2-Gal80ts > dome flies. One of three independent experiments is shown. (H) Phospho-AKT. Unpaired T-Test: *p=0.0145. (I) Total AKT. Unpaired T-Test: ***p<0.0003. (J) Western blots of Phospho-AKT in leg samples from 14-day-old MHC-Gal4/+ and MHC-Gal4 >dome (II) flies. One of two independent experiments is shown. Unpaired T-Test: ns p=0.2557. (K) Lifespan of MHC-Gal4/+ and MHC-Gal4 >dome (II) flies at 29°C. Log-Rank test: χ2 = 82.9, ***p<0.0001; Wilcoxon test: χ2 = 58.91, ***p<0.0001. (L–R) Expression by qRT-PCR of Akt1 and insulin-like peptides in whole fly samples from 14-day-old 24B-Gal80ts/+ and 24B-Gal80ts-dome flies. All transcript levels are normalized to Rpl1 and shown in arbitrary units [au]. P values in B, G, H-J, L-R from unpaired T-test. (S) Feeding assay of 24-Gal80ts/+ and 24B2-Gal80ts > dome flies at 29°C. n = 4 were analysed per genotype. Absorbance at 620 nm is shown in arbitrary units [au]. Unpaired T-Test: ns p=0.8819.

Figure 2 with 1 supplement
Hop is required, but not sufficient, for Dome to control AKT.

(A) Lifespan of w1118 and hopTum-L flies at 29°C. Log-Rank test: χ2 = 0.3223, ns p=0.5702; Wilcoxon test: χ2 = 0.4756, ns p=0.4906. (B) Phospho-AKT in leg samples from 14-day-old w1118 and hopTum-L flies. One experiment of two is shown. Unpaired T-Test: ns p=0.6854. (C) Actin (Phalloidin) and neutral lipid (LipidTox) in flight muscle from 14-day-old w1118 and hopTum-L flies. One representative fly shown of six analysed per genotype. Scale bar = 50 µm. (D) Lifespan of 24B-Gal80ts/+, 24B-Gal80ts > dome, and hopTum-L;24B-Gal80ts > dome flies at 29°C. Log-Rank test (24B-Gal80ts/+ vs. 24B-Gal80ts > dome): χ2 = 319.4, ***p<0.0001; Wilcoxon test (24B-Gal80ts/+ vs. 24B-Gal80ts > dome): χ2 = 280.2, ***p<0.0001. Log-Rank test (24B-Gal80ts/+ vs. hopTum-L 24B-Gal80ts > dome): χ2 = 18.87, ***p<0.0001; Wilcoxon test (24B-Gal80ts/+ vs. hopTum-L 24B-Gal80ts > dome): χ2 = 20.83, ***p<0.0001. (E) Phospho-AKT in leg samples from 14-day-old 24B-Gal80ts/+, 24B-Gal80ts > dome and hopTum-L;24B-Gal80ts > dome flies. P values from unpaired T-Test.

Figure 2—figure supplement 1
Interactions of dome with AMPK, MAPK, and FOXO signalling in adult muscle.

(A) Phospho-AKT in leg samples from 14-day-old 24B-Gal80ts/+, 24B-Gal80ts > AMPKα-IR, and 24B-Gal80ts > AMPKβ-IR flies. One of three independent experiments is shown. P values from unpaired T-Test. (B) Phospho-AKT in leg samples from 14-day-old 24B-Gal80ts/+, 24B-Gal80ts > rl IR, and 24B-Gal80ts > Dsor1 IR flies. One of three independent experiments is shown. P values from unpaired T-Test. (C) Lifespan of 24B-Gal80ts/+, 24B-Gal80ts > rl IR, and 24B-Gal80ts > Dsor1 IR flies at 29°C. Log-Rank test (24B-Gal80ts/+ vs. 24B-Gal80ts > rl IR): χ2 = 60.29, ***p<0.0001; Wilcoxon test (24B-Gal80ts/+ vs. 24B-Gal80ts > rl IR): χ2 = 58.32, ***p<0.0001; Log-Rank test (24B-Gal80ts/+ vs. 24B-Gal80ts > Dsor1 IR): χ2 = 1.186, ns p=0.2760; Wilcoxon test (24B-Gal80ts/+ vs. 24B-Gal80ts > Dsor1 IR): χ2 = 0.0033, ns p=0.9538. (D) Phospho-AKT in leg samples from 14-day-old 24B-Gal80ts/+ and 24B-Gal80ts > hop IR flies. One of two independent experiments is shown. Unpaired T-Test: *p=0.0187. (E) Lifespan of 24B-Gal80ts/+ and 24B-Gal80ts > hop IR flies at 29°C. Log-Rank test (24B-Gal80ts/+ vs. 24B-Gal80ts > hop IR): χ2 = 546.4, ***p<0.0001; Wilcoxon test (24B-Gal80ts/+ vs. 24B-Gal80ts > hop IR): χ2 = 458.1, ***p<0.0001. P values in A, C, E from unpaired T-test.

Figure 3 with 1 supplement
AKT hyperactivation causes pathology in 24B-Gal80ts > dome flies.

(A) Lifespan of 24B-Gal80ts/+ and 24B-Gal80ts > myr-AKT at 29°C. Log-Rank test: χ2 = 115.5, ***p<0.0001; Wilcoxon test: χ2 = 123.6, ***p<0.0001. (B) Negative geotaxis assay of 14-day-old 24B-Gal80ts/+ and 24B-Gal80ts > myr-AKT flies. Points represent mean height climbed in individual vials (~20 flies/vial), pooled from two independent experiments. Unpaired T-Test: *p=0.018. (C) TLC of triglycerides in 7-day-old 24B-Gal80ts/+ and 24B-Gal80ts > myr-AKT flies, n = 3–4 per genotype. One experiment of two is shown. Unpaired T-Test: *p=0.0144. (D) Glucose and trehalose (left panel) and glycogen (right panel) in 7-day-old 24B-Gal80ts/+ (n = 12) and 24B-Gal80ts > myr-AKT (n = 9) flies, pooled from two independent experiments. Unpaired T-Test (Glucose +Trehalose): ***p=0.0009 and unpaired T-Test (Glycogen): ***p<0.0001. (E) CO2 produced, O2 consumed, and RQ of 7-day-old 24B-Gal80ts/+ and 24B-Gal80ts > myr-AKT flies. Box plots show data from one representative experiment of three, with data points collected from a 24 hr measurement pooled from 3 to 4 tubes per genotype with 10 flies/tube. P values from Mann-Whitney test. (F) Phalloidin and LipidTox staining of thorax samples from 14-day-old 24B-Gal80ts/+ and 24B-Gal80ts > myr-AKT flies. One representative fly per genotype is shown of 3 analysed per group in two independent experiments. Scale bar = 50 µm. (G) Lifespan of 24B-Gal80ts/+, 24B-Gal80ts > dome, UAS-domeΔ/+, 24B-Gal80ts > AKT-IR, UAS-AKT-IR/+, 24B-Gal80ts > AKT-IR;dome and UAS-AKT-IR;dome/+ flies at 29°C. Log-Rank test (24B-Gal80ts > dome vs. 24B-Gal80ts > AKT-IR;dome): χ2 = 101.0, ***p<0.0001; Wilcoxon test (24B-Gal80ts > dome vs. 24B-Gal80ts > AKT-IR;dome): χ2 = 59.87, ***p<0.0001. (H) Lifespan of 24B-Gal80ts/+, 24B-Gal80ts > dome, foxo-GFP;24B-Gal80ts/+, and foxo-GFP;24B-Gal80ts > dome flies at 29°C. Log-Rank test (24B-Gal80ts > dome vs. foxo-GFP;24B-Gal80ts > dome): χ2 = 114.0, ***p<0.0001; Wilcoxon test (24B-Gal80ts > dome vs. foxo-GFP;24B-Gal80ts > dome): χ2 = 93.59, ***p<0.0001. (I) Glucose + trehalose and glycogen in 7-day-old 24B-Gal80ts/+, 24B-Gal80ts > domeΔ, foxo-GFP;24B-Gal80/+, and foxo-GFP; 24B-Gal80ts > domeΔ flies. Statistical testing was performed with one-way ANOVA. (J) TLC of triglycerides in 7-day-old 24B-Gal80ts/+, 24B-Gal80ts > domeΔ, foxo-GFP;24B-Gal80ts/+, and foxo-GFP;24B-Gal80ts > domeΔ flies. Statistical testing was performed with one-way ANOVA.

Figure 3—figure supplement 1
Mutual regulation by AKT, Foxo, and Dome.

(A) dome expression by qRT-PCR in whole fly samples from 14-day-old 24B-Gal80ts/+, 24B-Gal80ts > dome, 24B-Gal80ts > Akt-IR, and 24B-Gal80ts > Akt-IR;dome flies. (B–F) Gene xpression analysis of dome, upd2, Pepck, Thor and InR in whole fly samples from 14-day-old 24B-Gal80ts/+, 24B-Gal80ts > dome, foxo-GFP;24B-Gal80ts/+, and foxo-GFP;24B-Gal80ts > dome flies. P values from unpaired T-test. (B) dome. (C) upd2. (D) Pepck. (E) Thor. (F) InR. (G) Western blot for GFP to detect the Foxo-GFP fusion protein in leg samples from 14-day-old 24B-Gal80ts/+, 24B-Gal80ts > dome, foxo-GFP;24B-Gal80ts/+, and foxo-GFP;24B-Gal80ts > dome flies. (H) Western blot for Phospho-AKT in leg samples from 14-day-old 24B-Gal80ts/+, 24B-Gal80ts > dome, foxo-GFP;24B-Gal80ts/+, and foxo-GFP;24B-Gal80ts > dome flies. One of two independent experiments is shown. P values in A-D from unpaired T-test. (I–M) Gene expression analysis of Akh and six confirmed or putative Akh target genes in whole fly samples from 14-day-old 24B-Gal80ts/+ and 24B-Gal80ts > dome flies. Transcript levels are shown in arbitrary units [au]. P values from unpaired T-test. (I) Akh. (J) Hsl. (K) bmm. (L) plin1. (M) plin2.

Figure 4 with 2 supplements
Plasmatocytes promote muscle Dome activity.

(A) Muscle (MHCYFP) and plasmatocytes (srpHemo-3xmCherry) in 7-day-old flies. Plasmatocytes are found in close proximity to adult muscles. One representative fly of 5 is shown. Scale bar = 500 µm. (B) Legs and plasmatocytes in 7-day-old 10xSTAT92E-GFP;srpHemo-3xmCherry flies. Muscle with high JAK-STAT activity (green) is surrounded by plasmatocytes (magenta). One representative fly of 5 is shown. Scale bar = 100 µm. (C) STAT activity and plasmatocytes in legs from control (10xSTAT92E-GFP;crq-Gal4 >CD8-mCherry/+) and upd3-overexpressing (10xSTAT92E-GFP;crq-4>CD8mCherry/UAS-upd3) flies. One representative fly of 10–14 is shown. Scale bar = 100 µm. Graph shows mean fluorescence intensity (MFI). Unpaired T-Test: ***p<0.0001. (D) STAT activity and plasmatocytes in legs from control (10xSTAT92E-GFP;crq-Gal80ts > CD8-mCherry/+) and plasmatocyte-depleted (10xSTAT92E-GFP;crq-Gal80ts > CD8 mCherry/rpr) flies. One representative fly of six is shown. Scale bar = 250 µm. (E) Western blot analysis of STAT-driven GFP in legs from 7-day-old control (10xSTAT92E-GFP;crq-Gal80ts > CD8-mCherry/+) and plasmatocyte-depleted (10xSTAT92E-GFP;crq-Gal80ts > CD8 mCherry/rpr flies). One representative experiment of three is shown. Graph shows STAT-GFP/α-tubulin for control (crq-Gal80ts/+) and plasmatocyte-depleted (crq-Gal80ts > rpr) leg samples. Unpaired T-Test: *p=0.0121. (F) Lifespan of crq-Gal80ts/+, crq-Gal80ts > rpr, upd2Δ upd3Δ;crq-Gal80ts/+, and upd2Δ upd3Δ;crq-Gal80ts > rpr flies at 29°C. Log-Rank test (crq-Gal80ts/+ vs. crq-Gal80ts > rpr): χ2 = 101.7, ***p<0.0001; Wilcoxon test (crq-Gal80ts/+ vs. crq-Gal80ts > rpr): χ2 = 107.8, ***p<0.0001; Log-Rank test (crq-Gal80ts/+ vs. upd2 Δ upd3Δ;crq-Gal80ts > rpr): χ2 = 60.03, ***p<0.0001; Wilcoxon test (crq-Gal80ts/+ vs. upd2 Δ upd3Δ;crq-Gal80ts > rpr): χ2 = 80.97, ***p<0.0001. (G) Actin (Phalloidin) and neutral lipid (LipidTox) in thorax samples from 14-day-old crq-Gal80ts/+, crq-Gal80ts > rpr, upd2 Δ upd3Δ;crq-Gal80ts/+, and upd2 Δ upd3Δ;crq-Gal80ts > rpr flies. One representative fly per genotype shown of 6 analysed per group. Scale bar = 50 µm. (H) Lifespan of crq-Gal4/+ and crq-Gal4 >upd1 IR flies at 29°C. Log-Rank test: χ2 = 31.36, ***p<0.0001; Wilcoxon test: χ2 = 22.17, ***p=0.0001. (I) Expression by qRT-PCR of upd1, upd2 and upd3 in thorax samples of crq-Gal4/+ and crq-Gal4 >upd1 IR flies, data from four independent samples of each genotype.. Unpaired T-Test (upd1): ns p=0.848, unpaired T-Test (upd2): *p=0.0449 and unpaired T-Test (upd3): **p=0.0038. (J) Lifespan of crq-Gal4/+, upd2 Δ upd3Δ;UAS-upd1-IR/+, and upd2Δ upd3Δ;crq-Gal4 >upd1 IR flies at 29°C. Log-Rank test (crq-Gal4/+ vs. upd2 Δ upd3Δ;crq-Gal4 >upd1 IR): χ2 = 41.12, ***p<0.0001; Wilcoxon test (crq-Gal4/+ vs. upd2Δ upd3Δ;crq-Gal4 >upd1 IR): χ2 = 54.47, ***p<0.0001 Log-Rank test (crq-Gal4/+ vs. upd2 Δ upd3Δ;UAS-upd1-IR/+): χ2 = 14.46, ***p<0.0001; Wilcoxon test (crq-Gal4/+ vs. upd2Δ upd3Δ;UAS-upd1-IR/+): χ2 = 19.99, ***p<0.0001. P values in C, E, H from unpaired T-test.

Figure 4—figure supplement 1
Further characterisation of plasmatocyte-depleted flies.

(A) Plasmatocyte depletion in crq-Gal80ts > rpr flies (right) and controls (left) at 24 hr, 48 hr and 72 hr at 29°C. One out of four flies is shown. Scale bar = 250 µm. (B) Quantification of mCherry-positive plasmatocytes in crq-Gal80ts > rpr flies (right) and controls (left) by flow cytometry after 72 hr at 29°C. n = 3 per group was analysed. Unpaired T-Test: *p=0.0337. (C) Negative geotaxis assay of 14-day-old crq-Gal80ts/+, crq-Gal80ts > rpr, upd2upd3;UAS-rpr/+ and upd2upd3;crq-Gal80ts > rpr flies. Points represent mean climbing height of individual vials analysed (~20 flies/vial). Unpaired T-Test: *p=0.0194.

Figure 4—figure supplement 2
Further characterisation of requirements for specific Upds.

(A) Glucose + trehalose and glycogen in 7-day-old crq-Gal80ts/+, crq-Gal80ts > rpr, upd2Δ upd3Δ;crq-Gal80ts/+, and upd2Δ upd3Δ; crq-Gal80ts > rpr flies. (B) TLC of triglyceride in 7-day-old crq-Gal80ts/+, crq-Gal80ts > rpr, upd2Δ upd3Δ;crq-Gal80ts/+, and upd2Δ upd3Δ;crq-Gal80ts > rpr flies, n = 2–3 samples per genotype. (C) Western blot analysis of STAT-driven GFP in legs from 7-day-old w1118, upd3Δ, upd2Δ, and upd2Δ upd3Δ flies. One representative experiment of two is shown. (D) STAT activity and plasmatocytes in legs from 7-day-old control (crq-Gal4/+), upd1 knockdown (crq-Gal4 >upd1 IR), and upd3 knockdown (crq-Gal4 >upd3 IR) flies. One representative fly is shown of 5–7 imaged for each genotype. Scale bar = 100 µm. Mean fluorescence intensity (MFI) is shown for all flies imaged. (E) Western blot analysis of STAT-driven GFP in legs from 7-day-old control (crq-Gal4/+), upd1 knockdown (crq-Gal4 >upd1 IR), and upd3 knockdown (crq-Gal4 >upd3 IR) flies. One of two independent experiments is shown. (F) Western blot analysis of STAT-driven GFP in thorax from 7-day-old crq-Gal4/+, crq-Gal4 >upd1, upd2Δupd3Δ;crq-Gal4/+ and upd2Δupd3Δ;crq-Gal4 >upd1 IR flies. P values in A-F from unpaired T-test.

Tables

Key resources table
Reagent type
(species) or resource
DesignationSource or referenceIdentifiersAdditional
information
Genetic reagent
(D. melanogaster)
w1118; tubulin-Gal80ts/SM6a;24B-Gal4/TM6c, Sb1This studyInserted Elements: P[w[+mC]=tubP-GAL80[ts]]; P[GawB]how24B
Genetic reagent (D. melanogaster)w1118; tubulin-Gal80ts/SM6a;Mef2-Gal4/TM6c, Sb1This studyInserted Elements: P[w[+mC]=tubP-GAL80[ts]]; P[GAL4-Mef2.R]3
Genetic reagent (D. melanogaster)w1118;;UAS-dome/TM6c, Sb1Brown et al., 2001Gift of James Castelli-Gair Hombría
Genetic reagent (D. melanogaster)w1118;UAS-dome/CyOBrown et al., 2001Gift of James Castelli-Gair Hombría
Genetic reagent (D. melanogaster)w1118;;UAS-myr-AKT/TM6c, Sb1Stocker et al., 2002Gift of Ernst Hafen
Genetic reagent (D. melanogaster)w;UAS-AMPKα-IRVienna Drosophila Research Center (VDRC)RRID:FlyBase_FBst0478025; VDRC 106200
Genetic reagent (D. melanogaster)w;UAS-AMPKβ-IRVDRCRRID:FlyBase_FBst0476347; VDRC 104489
Genetic reagent (D. melanogaster)w;UAS-rl-IRVDRCRRID:FlyBase_FBst0480887; VDRC 109108
Genetic reagent (D. melanogaster)w;UAS-Dsor1-IRVDRCRRID:FlyBase_FBst0479098; VDRC 107276
Genetic reagent (D. melanogaster)w1118;foxoGFPBDSCRRID:BDSC_38644Inserted Element:
PBac[foxo-GFP.FLAG]VK00037
Genetic reagent (D. melanogaster)w;UAS-AKT-IRVDRCRRID:FlyBase_FBst0475561; VDRC 103703
Genetic reagent (D. melanogaster)w1118;10xSTAT92E-GFPBDSC
Bach et al., 2007
RRID:BDSC_26197Inserted Element:
P[10XStat92E-GFP]1
Genetic reagent (D. melanogaster)w1118;MHC-Gal4,MHC-RFP/SM6aBDSCRRID:BDSC_38464Inserted Element:
P[Mhc-GAL4.F3-580]2; P[Mhc-RFP.F3-580]2
Genetic reagent (D. melanogaster)w upd2 Δ upd3Δ;;;BDSCRRID:BDSC_55729
Genetic reagent (D. melanogaster)w1118;;crq-Gal4/TM6 c, Sb1Gift of Nathalie Franc
Genetic reagent (D. melanogaster)w1118;tub-Gal80ts;TM2/TM6 c, Sb1BDSCRRID:BDSC_7108
Genetic reagent (D. melanogaster)w1118;;UAS-rpr/TM6 c, Sb1BDSCRRID:BDSC_5824
Genetic reagent (D. melanogaster)w1118;UAS-CD8-mCherryBDSCRRID:BDSC_27391
Genetic reagent (D. melanogaster)w1118;;srpHemo-3xmCherry/TM6c, Sb1Gyoergy et al., 2018
Genetic reagent (D. melanogaster)w;UAS-hop-IRVDRCRRID:FlyBase_FBst0463355; VDRC 40037
Genetic reagent (D. melanogaster)w;UAS-upd1-IR/SM6aVDRCRRID:FlyBase_FBst0459787; VDRC 3282
Genetic reagent (D. melanogaster)w;UAS-upd3-IRVDRCRRID:FlyBase_FBst0456774; VDRC 27134
Genetic reagent (D. melanogaster)w1118;;UAS-upd3/TM6 c, Sb1Gift of Bruce Edgar
Genetic reagent (D. melanogaster)w1118;UAS-2xeGFP/SM6aBDSCRRID:BDSC_6874
Genetic reagent (D. melanogaster)w1118 hopTum-L/FM7hBDSCRRID:BDSC_8492backcrossed onto w1118 background
Sequence-based reagentAkt1_forwardThis studyPCR primers5’-ctttgcgagtattaactggacaga-3’
Sequence-based reagentAkt1_reverseThis studyPCR primers5’-ggatgtcacctgaggcttg-3’
Sequence-based reagentIlp2_forwardThis studyPCR primers5’-atcccgtgattccaccacaag-3’
Sequence-based reagentIlp2_reverseThis studyPCR primers5’-gcggttccgatatcgagtta-3’
Sequence-based reagentIlp3_forwardThis studyPCR primers5’-caacgcaatgaccaagagaa-3’
Sequence-based reagentIlp3_reverseThis studyPCR primers5’-tgagcatctgaaccgaact-3’
Sequence-based reagentIlp4_forwardThis paperPCR primers5’-gagcctgattagactgggactg-3’
Sequence-based reagentIlp4_reverseThis paperPCR primers5’-tggaccggctgcagtaac-3’
Sequence-based reagentIlp5_forwardThis paperPCR primers5’-gccttgatggacatgctga-3’
Sequence-based reagentIlp5_reverseThis paperPCR primers5’-agctatccaaatccgcca-3’
Sequence-based reagentIlp6_forwardThis paperPCR primers5’-cccttggcgatgtatttcc-3’
Sequence-based reagentIlp6_reverseThis paperPCR primers5’-cacaaatcggttacgttctgc-3’
Sequence-based reagentIlp7_forwardThis paperPCR primers5’-cacaccgaggagggtctc-3’
Sequence-based reagentIlp7_reverseThis paperPCR primers5’-caatatagctggcggacca-3’
Sequence-based reagentdome_forwardThis paperPCR primers5’-cggactttcggtactccatc-3’
Sequence-based reagentdome_reverseThis paperPCR primers5’-accttgatgaggccaggat-3’
Sequence-based reagentupd1_forwardThis paperPCR primers5’-gcacactgatttcgatacgg-3’
Sequence-based reagentupd1_reverseThis paperPCR primers5’- ctgccgtggtgctgtttt −3’
Sequence-based reagentupd2_forwardThis paperPCR primers5’-cggaacatcacgatgagcgaat-3’
Sequence-based reagentupd2_reverseThis paperPCR primers5’-tcggcaggaacttgtactcg-3’
Sequence-based reagentupd3_forwardThis paperPCR primers5’-actgggagaacacctgcaat-3’
Sequence-based reagentupd3_reverseThis paperPCR primers5’-gcccgtttggttctgtagat-3’
Sequence-based reagentPepck_forwardThis paperPCR primers5’-ggataaggtggacgtgaag-3’
Sequence-based reagentPepck_reverseThis paperPCR primers5’-acctcctgcgaccagaact-3’
Sequence-based reagentThor_forwardThis paperPCR primers5’-caggaaggttgtcatctcgga-3’
Sequence-based reagentThor_reverseThis paperPCR primers5’-ggagtggtggagtagagggtt-3’
Sequence-based reagentInR_forwardThis paperPCR primers5'-gcaccattataaccggaacc-3'
Sequence-based reagentInR_reverseThis paperPCR primers5'-ttaattcatccatgacgtgagc-3'
Sequence-based reagentAkh_forwardThis paperPCR primers5’- agccgtgctcttcatgct-3’
Sequence-based reagentAkh_reverseThis paperPCR primers5’-aaaggttccaggaccagctc-3’
Sequence-based reagentHsl_forwardThis paperPCR primers5’-cttggaaatacttgaggggttg-3’
Sequence-based reagentHsl_reverseThis paperPCR primers5’-agatttgatgcagttctttgagc-3’
Sequence-based reagentbmm_forwardThis paperPCR primers5’-gtctcctctgcgatttgccat-3’
Sequence-based reagentbmm_reverseThis paperPCR primers5’-ctgaagggacccagggagta-3’
Sequence-based reagentplin1_forwardThis paperPCR primers5’-gcgttctatggtagccttcag-3’
Sequence-based reagentplin1_reverseThis paperPCR primers5’-gcgtccggatagaaagctg-3’
Sequence-based reagentplin2_forwardThis paperPCR primers5’-gcagaatggcaagagttctga-3’
Sequence-based reagentplin2_reverseThis paperPCR primers5’-actgtgtgtaggactggatcctc-3’
Sequence-based reagentRpl1_forwardThis paperPCR primers5’-tccaccttgaagaagggcta-3’
Sequence-based reagentRpl1_reverseThis paperPCR primers5’-ttgcggatctcctcagactt-3’
Peptide, recombinant proteinTrehalaseSigma AldrichT8778
Peptide, recombinant proteinβ-AmyloglucosidaseSigma Aldrich10115
Antibodyanti-phospho(Ser505)-AKTCell Signal Technology (CST)Cat# 4054; RRID:AB_331414WB (1:1000)
Antibodyanti-AKTCell Signal Technology (CST)Cat# 4691; RRID:AB_915783WB (1:1000)
Antibodyanti-phospho(Thr172)-AMPKαCell Signal Technology (CST)Cat# 2535; RRID:AB_331250WB (1:1000)
Antibodyanti-phospho(Thr389)-p70 S6 kinaseCell Signal Technology (CST)Cat# 9206; RRID:AB_2285392WB (1:1000)
Antibodyanti-GFPCell Signal Technology (CST)Cat# 2956; RRID:AB_1196615WB (1:1000)
Antibodyanti-phospho-p44/42 MAPK (Erk1/2)Cell Signal Technology (CST)Cat# 4370; RRID:AB_2315112WB (1:1000)
Antibodyanti-α-tubulinDevelopmental Studies Hybridoma Bank)Clone 12G10; RRID:AB_1157911WB (1:3000)
AntibodyHRP anti-rabbit IgGCell Signal Technology (CST)Cat# 7074; RRID:AB_2099233WB (1:5000)
AntibodyHRP anti-mouse IgGCell Signal Technology (CST)Cat# 7076; RRID:AB_330924WB (1:5000)
Commercial assay or kitFirst Strand cDNA Synthesis KitThermo ScientificK1622
Commercial assay or kitSensimix SYBR Green no-ROXBiolineQT650-05
Chemical compound, drugBromophenol blueSigma AldrichSML1656
Chemical compound, drugXylene cyanolCarl RothA513.1
Chemical compound, drugBrilliant Blue FCFSigma Aldrich80717
OtherHCS Lipid Tox Deep RedThermo FisherH34477IF (1:200)
OtherAlexa Fluor 488 PhalloidinThermo FisherA12379IF (1:20)
OtherFluoromount-Gebioscience00-4958-02
OtherTRIzolInvitrogenAM9738
OtherFixable Viability Dye 780ebioscience65-0865-18FC (1:1000)
OtherSupersignal West Pico Chemiluminescent SubstrateThermo Scientific34077
OtherSupersignal West Femto Chemiluminescent SubstrateThermo Scientific34094
OtherGlucose ReagentSentinel Diagnostics17630H
Software, algorithmImageJImageJRRID:SCR_003070
Software, algorithmGraphPad PrismGraphPadRRID:SCR_002798
Software, algorithmFlowJoFlowJoRRID:SCR_008520)

Additional files

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katrin Kierdorf
  2. Fabian Hersperger
  3. Jessica Sharrock
  4. Crystal M Vincent
  5. Pinar Ustaoglu
  6. Jiawen Dou
  7. Attila Gyoergy
  8. Olaf Groß
  9. Daria E Siekhaus
  10. Marc S Dionne
(2020)
Muscle function and homeostasis require cytokine inhibition of AKT activity in Drosophila
eLife 9:e51595.
https://doi.org/10.7554/eLife.51595