Broadly neutralizing human antibodies against dengue virus identified by single B cell transcriptomics

  1. Natasha D Durham
  2. Aditi Agrawal
  3. Eric Waltari
  4. Derek Croote
  5. Fabio Zanini
  6. Mallorie Fouch
  7. Edgar Davidson
  8. Olivia Smith
  9. Esteban Carabajal
  10. John E Pak
  11. Benjamin J Doranz
  12. Makeda Robinson
  13. Ana M Sanz
  14. Ludwig L Albornoz
  15. Fernando Rosso
  16. Shirit Einav
  17. Stephen R Quake
  18. Krista M McCutcheon
  19. Leslie Goo  Is a corresponding author
  1. Chan Zuckerberg Biohub, United States
  2. Stanford University, United States
  3. Integral Molecular, Inc, United States
  4. Fundación Valle del Lili, Colombia
  5. Fred Hutchinson Cancer Research Center, United States

Abstract

Eliciting broadly neutralizing antibodies (bNAbs) against the four dengue virus serotypes (DENV1-4) that are spreading into new territories is an important goal of vaccine design. To define bNAb targets, we characterized 28 antibodies belonging to expanded and hypermutated clonal families identified by transcriptomic analysis of single plasmablasts from DENV-infected individuals. Among these, we identified J9 and J8, two somatically related bNAbs that potently neutralized DENV1-4. Mutagenesis studies showed that the major recognition determinants of these bNAbs are in E protein domain I, distinct from the only known class of human bNAbs against DENV with a well-defined epitope. B cell repertoire analysis from acute-phase peripheral blood suggested that J9 and J8 followed divergent somatic hypermutation pathways, and that a limited number of mutations was sufficient for neutralizing activity. Our study suggests multiple B cell evolutionary pathways leading to DENV bNAbs targeting a new epitope that can be exploited for vaccine design.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2, 4, and 6.

The following previously published data sets were used

Article and author information

Author details

  1. Natasha D Durham

    Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  2. Aditi Agrawal

    Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  3. Eric Waltari

    Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    Eric Waltari, Inventor of the following patent application, which is co-owned by the Chan Zuckerberg Biohub and Stanford University: PCT patent application entitled ANTIBODIES AGAINST DENGUE VIRUS AND RELATED METHODS, Serial no. PCT/US2019/045427, filed August 7, 2019.
  4. Derek Croote

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    Derek Croote, Inventor of the following patent application, which is co-owned by the Chan Zuckerberg Biohub and Stanford University: PCT patent application entitled ANTIBODIES AGAINST DENGUE VIRUS AND RELATED METHODS, Serial no. PCT/US2019/045427, filed August 7, 2019.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4907-1865
  5. Fabio Zanini

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    Fabio Zanini, Inventor of the following patent application, which is co-owned by the Chan Zuckerberg Biohub and Stanford University: PCT patent application entitled ANTIBODIES AGAINST DENGUE VIRUS AND RELATED METHODS, Serial no. PCT/US2019/045427, filed August 7, 2019.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7097-8539
  6. Mallorie Fouch

    Integral Molecular, Inc, Philadelphia, United States
    Competing interests
    No competing interests declared.
  7. Edgar Davidson

    Integral Molecular, Inc, Philadelphia, United States
    Competing interests
    No competing interests declared.
  8. Olivia Smith

    Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  9. Esteban Carabajal

    Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  10. John E Pak

    Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    No competing interests declared.
  11. Benjamin J Doranz

    Integral Molecular, Inc, Philadelphia, United States
    Competing interests
    No competing interests declared.
  12. Makeda Robinson

    Department of Medicine, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  13. Ana M Sanz

    Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
    Competing interests
    No competing interests declared.
  14. Ludwig L Albornoz

    Pathology and Laboratory Department, Fundación Valle del Lili, Cali, Colombia
    Competing interests
    No competing interests declared.
  15. Fernando Rosso

    Clinical Research Center, Fundación Valle del Lili, Cali, Colombia
    Competing interests
    No competing interests declared.
  16. Shirit Einav

    Department of Medicine, Stanford University, Stanford, United States
    Competing interests
    Shirit Einav, Inventor of the following patent application, which is co-owned by the Chan Zuckerberg Biohub and Stanford University: PCT patent application entitled ANTIBODIES AGAINST DENGUE VIRUS AND RELATED METHODS, Serial no. PCT/US2019/045427, filed August 7, 2019.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6441-4171
  17. Stephen R Quake

    Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    Stephen R Quake, Inventor of the following patent application, which is co-owned by the Chan Zuckerberg Biohub and Stanford University: PCT patent application entitled ANTIBODIES AGAINST DENGUE VIRUS AND RELATED METHODS, Serial no. PCT/US2019/045427, filed August 7, 2019.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1613-0809
  18. Krista M McCutcheon

    Infectious Disease Initiative, Chan Zuckerberg Biohub, San Francisco, United States
    Competing interests
    Krista M McCutcheon, Inventor of the following patent application, which is co-owned by the Chan Zuckerberg Biohub and Stanford University: PCT patent application entitled ANTIBODIES AGAINST DENGUE VIRUS AND RELATED METHODS, Serial no. PCT/US2019/045427, filed August 7, 2019.
  19. Leslie Goo

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    lgoo@fredhutch.org
    Competing interests
    Leslie Goo, Inventor of the following patent application, which is co-owned by the Chan Zuckerberg Biohub and Stanford University: PCT patent application entitled ANTIBODIES AGAINST DENGUE VIRUS AND RELATED METHODS, Serial no. PCT/US2019/045427, filed August 7, 2019.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3866-6735

Funding

Chan Zuckerberg Biohub

  • Natasha D Durham
  • Aditi Agrawal
  • Eric Waltari
  • Fabio Zanini
  • Olivia Smith
  • Esteban Carabajal
  • John E Pak
  • Stephen R Quake
  • Krista M McCutcheon
  • Leslie Goo

Fred Hutchinson Cancer Research Center

  • Leslie Goo

National Institutes of Health (HHSN272201400058C)

  • Benjamin J Doranz

NSF Graduate Research Fellowship

  • Derek Croote

Kou-I Yeh Stanford Graduate Fellowship

  • Derek Croote

Catalyst Award from Dr Ralph and Marian Falk Medical Research Trust

  • Shirit Einav

Stanford Bio-X Interdisciplinary Initiatives Seed Grants Program

  • Shirit Einav

Stanford Advanced Residency Training at Stanford Fellowship Program

  • Makeda Robinson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the Stanford University Administrative Panel on Human Subjects in Medical Research (Protocol #35460) and the Fundación Valle del Lili Ethics committee in biomedical research (Cali, Colombia). All subjects, their parents, or legal guardians provided written informed consent, and subjects between 6 to 17 years of age and older provided assent.

Reviewing Editor

  1. Sara L Sawyer, University of Colorado Boulder, United States

Version history

  1. Received: October 3, 2019
  2. Accepted: December 9, 2019
  3. Accepted Manuscript published: December 10, 2019 (version 1)
  4. Version of Record published: December 23, 2019 (version 2)

Copyright

© 2019, Durham et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,792
    Page views
  • 633
    Downloads
  • 29
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Natasha D Durham
  2. Aditi Agrawal
  3. Eric Waltari
  4. Derek Croote
  5. Fabio Zanini
  6. Mallorie Fouch
  7. Edgar Davidson
  8. Olivia Smith
  9. Esteban Carabajal
  10. John E Pak
  11. Benjamin J Doranz
  12. Makeda Robinson
  13. Ana M Sanz
  14. Ludwig L Albornoz
  15. Fernando Rosso
  16. Shirit Einav
  17. Stephen R Quake
  18. Krista M McCutcheon
  19. Leslie Goo
(2019)
Broadly neutralizing human antibodies against dengue virus identified by single B cell transcriptomics
eLife 8:e52384.
https://doi.org/10.7554/eLife.52384

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Roshni Roy, Pei-Lun Kuo ... Luigi Ferrucci
    Research Article Updated

    Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1β) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.

    1. Immunology and Inflammation
    2. Neuroscience
    René Lemcke, Christine Egebjerg ... Birgitte R Kornum
    Research Article

    Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.