ERK3/MAPK6 controls IL-8 production and chemotaxis

  1. Katarzyna Bogucka
  2. Malvika Pompaiah
  3. Federico Marini
  4. Harald Binder
  5. Gregory Harms
  6. Manuel Kaulich
  7. Matthias Klein
  8. Christian Michel
  9. Markus P Radsak
  10. Sebastian Rosigkeit
  11. Peter Grimminger
  12. Hansjörg Schild
  13. Krishnaraj Rajalingam  Is a corresponding author
  1. Johannes Gutenberg University of Mainz, Germany
  2. Goethe University Frankfurt, Germany
  3. Institute for Immunology/ University Medical Center Mainz, Germany
  4. University Medical Center of the Johannes Gutenberg University Mainz, Germany

Abstract

ERK3 is a ubiquitously expressed member of the atypical mitogen activated protein kinases (MAPKs) and the physiological significance of its short half-life remains unclear. By employing gastrointestinal 3D organoids, we detect that ERK3 protein levels steadily decrease during epithelial differentiation. ERK3 is not required for 3D growth of human gastric epithelium. However, ERK3 is stabilized and activated in tumourigenic cells, but deteriorates over time in primary cells in response to lipopolysaccharide (LPS). ERK3 is necessary for production of several cellular factors including interleukin-8 (IL-8), in both, normal and tumourigenic cells. Particularly, ERK3 is critical for AP-1 signaling through its interaction and regulation of c-Jun protein. The secretome of ERK3 deficient cells is defective in chemotaxis of neutrophils and monocytes both in vitro and in vivo. Further, knockdown of ERK3 reduces metastatic potential of invasive breast cancer cells. We unveil an ERK3-mediated regulation of IL-8 and epithelial secretome for chemotaxis.

Data availability

The RNA-seq data presented in this manuscript have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO series accession number GSE136002 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136002)

The following data sets were generated

Article and author information

Author details

  1. Katarzyna Bogucka

    Cell Biology Unit, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Malvika Pompaiah

    Cell Biology Unit, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Federico Marini

    Institute of Medical Biostatistics, Epidemiology and Informatics, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3252-7758
  4. Harald Binder

    IMBEI, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Gregory Harms

    Cell Biology Unit, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Manuel Kaulich

    Institute of Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9528-8822
  7. Matthias Klein

    Institute of Immunology, Institute for Immunology/ University Medical Center Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Christian Michel

    Department of Hematology, Medical Oncology, & Pneumology, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Markus P Radsak

    Department of Hematology, Medical Oncology, & Pneumology, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Sebastian Rosigkeit

    Cell Biology Unit, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Peter Grimminger

    Department of General, visceral and transplantation surgery, Johannes Gutenberg University of Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Hansjörg Schild

    Department of Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Krishnaraj Rajalingam

    Cell Biology Unit, Johannes Gutenberg University of Mainz, Mainz, Germany
    For correspondence
    krishna@uni-mainz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4175-9633

Funding

Deutsche Forschungsgemeinschaft (RA1739/4-1)

  • Krishnaraj Rajalingam

Deutsche Forschungsgemeinschaft (CRC1292)

  • Katarzyna Bogucka

Merck KGaA (ERK-KR)

  • Krishnaraj Rajalingam

Else Kröner-Fresenius-Stiftung (SUNMAPK)

  • Malvika Pompaiah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The animalexperiment was performed under the permission (G16-1-026) of the National Investigation Office Rheinland-Pfalz and conducted according to the German Animal Protection Law

Human subjects: Tissue samples employed are obtained from the biobank of the university medical center. Written informed consent was obtained from all patients, and the study was approved by the ethical committee at the University Medical Center of the JGU Mainz (approval # 837.100.16 (10419).

Copyright

© 2020, Bogucka et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,320
    views
  • 440
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Katarzyna Bogucka
  2. Malvika Pompaiah
  3. Federico Marini
  4. Harald Binder
  5. Gregory Harms
  6. Manuel Kaulich
  7. Matthias Klein
  8. Christian Michel
  9. Markus P Radsak
  10. Sebastian Rosigkeit
  11. Peter Grimminger
  12. Hansjörg Schild
  13. Krishnaraj Rajalingam
(2020)
ERK3/MAPK6 controls IL-8 production and chemotaxis
eLife 9:e52511.
https://doi.org/10.7554/eLife.52511

Share this article

https://doi.org/10.7554/eLife.52511

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    Sarah De Beuckeleer, Tim Van De Looverbosch ... Winnok H De Vos
    Research Article

    Induced pluripotent stem cell (iPSC) technology is revolutionizing cell biology. However, the variability between individual iPSC lines and the lack of efficient technology to comprehensively characterize iPSC-derived cell types hinder its adoption in routine preclinical screening settings. To facilitate the validation of iPSC-derived cell culture composition, we have implemented an imaging assay based on cell painting and convolutional neural networks to recognize cell types in dense and mixed cultures with high fidelity. We have benchmarked our approach using pure and mixed cultures of neuroblastoma and astrocytoma cell lines and attained a classification accuracy above 96%. Through iterative data erosion, we found that inputs containing the nuclear region of interest and its close environment, allow achieving equally high classification accuracy as inputs containing the whole cell for semi-confluent cultures and preserved prediction accuracy even in very dense cultures. We then applied this regionally restricted cell profiling approach to evaluate the differentiation status of iPSC-derived neural cultures, by determining the ratio of postmitotic neurons and neural progenitors. We found that the cell-based prediction significantly outperformed an approach in which the population-level time in culture was used as a classification criterion (96% vs 86%, respectively). In mixed iPSC-derived neuronal cultures, microglia could be unequivocally discriminated from neurons, regardless of their reactivity state, and a tiered strategy allowed for further distinguishing activated from non-activated cell states, albeit with lower accuracy. Thus, morphological single-cell profiling provides a means to quantify cell composition in complex mixed neural cultures and holds promise for use in the quality control of iPSC-derived cell culture models.

    1. Cell Biology
    Joan Chang, Adam Pickard ... Karl E Kadler
    Research Article

    Collagen-I fibrillogenesis is crucial to health and development, where dysregulation is a hallmark of fibroproliferative diseases. Here, we show that collagen-I fibril assembly required a functional endocytic system that recycles collagen-I to assemble new fibrils. Endogenous collagen production was not required for fibrillogenesis if exogenous collagen was available, but the circadian-regulated vacuolar protein sorting (VPS) 33b and collagen-binding integrin α11 subunit were crucial to fibrillogenesis. Cells lacking VPS33B secrete soluble collagen-I protomers but were deficient in fibril formation, thus secretion and assembly are separately controlled. Overexpression of VPS33B led to loss of fibril rhythmicity and overabundance of fibrils, which was mediated through integrin α11β1. Endocytic recycling of collagen-I was enhanced in human fibroblasts isolated from idiopathic pulmonary fibrosis, where VPS33B and integrin α11 subunit were overexpressed at the fibrogenic front; this correlation between VPS33B, integrin α11 subunit, and abnormal collagen deposition was also observed in samples from patients with chronic skin wounds. In conclusion, our study showed that circadian-regulated endocytic recycling is central to homeostatic assembly of collagen fibrils and is disrupted in diseases.