Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis

  1. Haaris S Khan
  2. Vidhya R Nair
  3. Cody R Ruhl
  4. Samuel Alvarez-Arguedas
  5. Jorge L Galvan Rendiz
  6. Luis H Franco
  7. Linzhang Huang
  8. Philip W Shaul
  9. Jiwoong Kim
  10. Yang Xie
  11. Ron B Mitchell
  12. Michael U Shiloh  Is a corresponding author
  1. University of Texas Southwestern Medical School, United States
  2. University of Texas Southwestern Medical Center, United States

Abstract

Mycobacterium tuberculosis (Mtb) can enter the body through multiple routes, including via specialized transcytotic cells called microfold cells (M cell). However, the mechanistic basis for M cell entry remains undefined. Here, we show that M cell transcytosis depends on the Mtb Type VII secretion machine and its major virulence factor EsxA. We identify scavenger receptor B1 (SR-B1) as an EsxA receptor on airway M cells. SR-B1 is required for Mtb binding to and translocation across M cells in mouse and human tissue. Together, our data demonstrate a previously undescribed role for Mtb EsxA in mucosal invasion and identify SR-B1 as the airway M cell receptor for Mtb.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Whole genome sequencing data have been deposited at NCBI Sequence Read Archive, Accession #PRJNA605439.

The following data sets were generated

Article and author information

Author details

  1. Haaris S Khan

    Internal Medicine, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Vidhya R Nair

    Internal Medicine and Microbiology, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cody R Ruhl

    Internal Medicine, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Samuel Alvarez-Arguedas

    Internal Medicine, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jorge L Galvan Rendiz

    Internal Medicine, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Luis H Franco

    Internal Medicine and Microbiology, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Linzhang Huang

    Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Philip W Shaul

    Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jiwoong Kim

    Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yang Xie

    Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ron B Mitchell

    Otolaryngology, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael U Shiloh

    Internal Medicine and Microbiology, University of Texas Southwestern Medical School, Dallas, United States
    For correspondence
    michael.shiloh@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4329-2253

Funding

National Institute of Allergy and Infectious Diseases (AI125939)

  • Michael U Shiloh

National Institute of Allergy and Infectious Diseases (AI142784)

  • Michael U Shiloh

National Institute of Allergy and Infectious Diseases (5T32AI005284)

  • Haaris S Khan

National Heart, Lung, and Blood Institute (HK131597)

  • Philip W Shaul

Burroughs Wellcome Fund (1017894)

  • Michael U Shiloh

Welch Foundation (I-1964-20180324)

  • Michael U Shiloh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were reviewed and approved by the Institutional Animal Care and Use Committee at the University of Texas Southwestern (protocol 2017-101836) and followed the eighth edition of the Guide for the Care and Use of Laboratory Animals. The University of Texas Southwestern is accredited by the American Association for Accreditation of Laboratory Animal Care (AAALAC).

Human subjects: Human adenoids were obtained from children undergoing elective adenoidectomy for sleep apnea after informed consent was obtained from parents or guardians. This study was reviewed by the University of Texas Southwestern Institutional Review Board (protocol STU 062016-087).

Copyright

© 2020, Khan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,248
    views
  • 351
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haaris S Khan
  2. Vidhya R Nair
  3. Cody R Ruhl
  4. Samuel Alvarez-Arguedas
  5. Jorge L Galvan Rendiz
  6. Luis H Franco
  7. Linzhang Huang
  8. Philip W Shaul
  9. Jiwoong Kim
  10. Yang Xie
  11. Ron B Mitchell
  12. Michael U Shiloh
(2020)
Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis
eLife 9:e52551.
https://doi.org/10.7554/eLife.52551

Share this article

https://doi.org/10.7554/eLife.52551

Further reading

    1. Immunology and Inflammation
    Zhiyan Wang, Nore Ojogun ... Mingfang Lu
    Research Article

    The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been increasing worldwide. Since gut-derived bacterial lipopolysaccharides (LPS) can travel via the portal vein to the liver and play an important role in producing hepatic pathology, it seemed possible that (1) LPS stimulates hepatic cells to accumulate lipid, and (2) inactivating LPS can be preventive. Acyloxyacyl hydrolase (AOAH), the eukaryotic lipase that inactivates LPS and oxidized phospholipids, is produced in the intestine, liver, and other organs. We fed mice either normal chow or a high-fat diet for 28 weeks and found that Aoah-/- mice accumulated more hepatic lipid than did Aoah+/+ mice. In young mice, before increased hepatic fat accumulation was observed, Aoah-/- mouse livers increased their abundance of sterol regulatory element-binding protein 1, and the expression of its target genes that promote fatty acid synthesis. Aoah-/- mice also increased hepatic expression of Cd36 and Fabp3, which mediate fatty acid uptake, and decreased expression of fatty acid-oxidation-related genes Acot2 and Ppara. Our results provide evidence that increasing AOAH abundance in the gut, bloodstream, and/or liver may be an effective strategy for preventing or treating MASLD.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.