Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis

  1. Haaris S Khan
  2. Vidhya R Nair
  3. Cody R Ruhl
  4. Samuel Alvarez-Arguedas
  5. Jorge L Galvan Rendiz
  6. Luis H Franco
  7. Linzhang Huang
  8. Philip W Shaul
  9. Jiwoong Kim
  10. Yang Xie
  11. Ron B Mitchell
  12. Michael U Shiloh  Is a corresponding author
  1. University of Texas Southwestern Medical School, United States
  2. University of Texas Southwestern Medical Center, United States

Abstract

Mycobacterium tuberculosis (Mtb) can enter the body through multiple routes, including via specialized transcytotic cells called microfold cells (M cell). However, the mechanistic basis for M cell entry remains undefined. Here, we show that M cell transcytosis depends on the Mtb Type VII secretion machine and its major virulence factor EsxA. We identify scavenger receptor B1 (SR-B1) as an EsxA receptor on airway M cells. SR-B1 is required for Mtb binding to and translocation across M cells in mouse and human tissue. Together, our data demonstrate a previously undescribed role for Mtb EsxA in mucosal invasion and identify SR-B1 as the airway M cell receptor for Mtb.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Whole genome sequencing data have been deposited at NCBI Sequence Read Archive, Accession #PRJNA605439.

The following data sets were generated

Article and author information

Author details

  1. Haaris S Khan

    Internal Medicine, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Vidhya R Nair

    Internal Medicine and Microbiology, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Cody R Ruhl

    Internal Medicine, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Samuel Alvarez-Arguedas

    Internal Medicine, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jorge L Galvan Rendiz

    Internal Medicine, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Luis H Franco

    Internal Medicine and Microbiology, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Linzhang Huang

    Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Philip W Shaul

    Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jiwoong Kim

    Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Yang Xie

    Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Ron B Mitchell

    Otolaryngology, University of Texas Southwestern Medical School, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Michael U Shiloh

    Internal Medicine and Microbiology, University of Texas Southwestern Medical School, Dallas, United States
    For correspondence
    michael.shiloh@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4329-2253

Funding

National Institute of Allergy and Infectious Diseases (AI125939)

  • Michael U Shiloh

National Institute of Allergy and Infectious Diseases (AI142784)

  • Michael U Shiloh

National Institute of Allergy and Infectious Diseases (5T32AI005284)

  • Haaris S Khan

National Heart, Lung, and Blood Institute (HK131597)

  • Philip W Shaul

Burroughs Wellcome Fund (1017894)

  • Michael U Shiloh

Welch Foundation (I-1964-20180324)

  • Michael U Shiloh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were reviewed and approved by the Institutional Animal Care and Use Committee at the University of Texas Southwestern (protocol 2017-101836) and followed the eighth edition of the Guide for the Care and Use of Laboratory Animals. The University of Texas Southwestern is accredited by the American Association for Accreditation of Laboratory Animal Care (AAALAC).

Human subjects: Human adenoids were obtained from children undergoing elective adenoidectomy for sleep apnea after informed consent was obtained from parents or guardians. This study was reviewed by the University of Texas Southwestern Institutional Review Board (protocol STU 062016-087).

Copyright

© 2020, Khan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,225
    views
  • 347
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haaris S Khan
  2. Vidhya R Nair
  3. Cody R Ruhl
  4. Samuel Alvarez-Arguedas
  5. Jorge L Galvan Rendiz
  6. Luis H Franco
  7. Linzhang Huang
  8. Philip W Shaul
  9. Jiwoong Kim
  10. Yang Xie
  11. Ron B Mitchell
  12. Michael U Shiloh
(2020)
Identification of scavenger receptor B1 as the airway microfold cell receptor for Mycobacterium tuberculosis
eLife 9:e52551.
https://doi.org/10.7554/eLife.52551

Share this article

https://doi.org/10.7554/eLife.52551

Further reading

    1. Immunology and Inflammation
    Yan Qian, Qiannv Liu ... Pengyan Xia
    Research Article

    The T6SS of Pseudomonas aeruginosa plays an essential role in the establishment of chronic infections. Inflammasome-mediated inflammatory cytokines are crucial for host defense against bacterial infections. We found that P. aeruginosa infection activates the non-canonical inflammasome in macrophages, yet it inhibits the downstream activation of the NLRP3 inflammasome. The VgrG2b of P. aeruginosa is recognized and cleaved by caspase-11, generating a free C-terminal fragment. The VgrG2b C-terminus can bind to NLRP3, inhibiting the activation of the NLRP3 inflammasome by rejecting NEK7 binding to NLRP3. Administration of a specific peptide that inhibits caspase-11 cleavage of VgrG2b significantly improves mouse survival during infection. Our discovery elucidates a mechanism by which P. aeruginosa inhibits host immune response, providing a new approach for the future clinical treatment of P. aeruginosa infections.

    1. Immunology and Inflammation
    2. Medicine
    Ole Bæk, Tik Muk ... Duc Ninh Nguyen
    Research Article

    Preterm infants are susceptible to neonatal sepsis, a syndrome of pro-inflammatory activity, organ damage, and altered metabolism following infection. Given the unique metabolic challenges and poor glucose regulatory capacity of preterm infants, their glucose intake during infection may have a high impact on the degree of metabolism dysregulation and organ damage. Using a preterm pig model of neonatal sepsis, we previously showed that a drastic restriction in glucose supply during infection protects against sepsis via suppression of glycolysis-induced inflammation, but results in severe hypoglycemia. Now we explored clinically relevant options for reducing glucose intake to decrease sepsis risk, without causing hypoglycemia and further explore the involvement of the liver in these protective effects. We found that a reduced glucose regime during infection increased survival via reduced pro-inflammatory response, while maintaining normoglycemia. Mechanistically, this intervention enhanced hepatic oxidative phosphorylation and possibly gluconeogenesis, and dampened both circulating and hepatic inflammation. However, switching from a high to a reduced glucose supply after the debut of clinical symptoms did not prevent sepsis, suggesting metabolic conditions at the start of infection are key in driving the outcome. Finally, an early therapy with purified human inter-alpha inhibitor protein, a liver-derived anti-inflammatory protein, partially reversed the effects of low parenteral glucose provision, likely by inhibiting neutrophil functions that mediate pathogen clearance. Our findings suggest a clinically relevant regime of reduced glucose supply for infected preterm infants could prevent or delay the development of sepsis in vulnerable neonates.