Abstract

Since the 1960s, a single class of agent has been licensed targeting virus-encoded ion channels, or 'viroporins', contrasting the success of channel blocking drugs in other areas of medicine. Although resistance arose to these prototypic adamantane inhibitors of the influenza A virus (IAV) M2 proton channel, a growing number of clinically and economically important viruses are now recognised to encode essential viroporins providing potential targets for modern drug discovery. We describe the first rationally designed viroporin inhibitor with a comprehensive structure-activity relationship (SAR). This step-change in understanding not only revealed a second biological function for the p7 viroporin from hepatitis C virus (HCV) during virus entry, but also enabled the synthesis of a labelled tool compound that retained biological activity. Hence, p7 inhibitors (p7i) represent a unique class of HCV antiviral targeting both the spread and establishment of infection, as well as a precedent for future viroporin-targeted drug discovery.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures.

Article and author information

Author details

  1. Joseph Shaw

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Rajendra Gosein

    School of Chemistry, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Monoj Mon Kalita

    Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8037-8489
  4. Toshana L Foster

    Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jayakanth Kankanala

    Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. D Ram Mahato

    Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  7. Sonia Abas

    School of Chemistry, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Barnabas J King

    School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8432-2282
  9. Claire Scott

    Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Emma Brown

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Matthew J Bentham

    Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Laura Wetherill

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Abigail Bloy

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Adel Samson

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Mark Harris

    School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Jamel Mankouri

    School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. David Rowlands

    School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Andrew Macdonald

    School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Alexander W Tarr

    School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1009-0823
  20. Wolfgang B Fischer

    Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  21. Richard Foster

    School of Chemistry, University of Leeds, Leeds, United Kingdom
    For correspondence
    r.foster@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  22. Stephen Griffin

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    For correspondence
    s.d.c.griffin@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7233-5243

Funding

Medical Research Council (G0700124)

  • Matthew J Bentham
  • Laura Wetherill
  • Stephen Griffin

Yorkshire Cancer Research Pump-Priming Award (PP025)

  • Toshana L Foster
  • Stephen Griffin

Leeds Teaching Hospitals Charitable Foundation (9R11/14-03)

  • Laura Wetherill
  • Stephen Griffin

Medical Research Council (MC.PC.13066)

  • Joseph Shaw
  • Rajendra Gosein
  • Richard Foster
  • Stephen Griffin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Shaw et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,751
    views
  • 237
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Shaw
  2. Rajendra Gosein
  3. Monoj Mon Kalita
  4. Toshana L Foster
  5. Jayakanth Kankanala
  6. D Ram Mahato
  7. Sonia Abas
  8. Barnabas J King
  9. Claire Scott
  10. Emma Brown
  11. Matthew J Bentham
  12. Laura Wetherill
  13. Abigail Bloy
  14. Adel Samson
  15. Mark Harris
  16. Jamel Mankouri
  17. David Rowlands
  18. Andrew Macdonald
  19. Alexander W Tarr
  20. Wolfgang B Fischer
  21. Richard Foster
  22. Stephen Griffin
(2020)
Rationally derived inhibitors of hepatitis C virus (HCV) p7 channel activity reveal prospect for bimodal antiviral therapy
eLife 9:e52555.
https://doi.org/10.7554/eLife.52555

Share this article

https://doi.org/10.7554/eLife.52555

Further reading

    1. Biochemistry and Chemical Biology
    Swarang Sachin Pundlik, Alok Barik ... Arvind Ramanathan
    Short Report

    Senescent cells are characterized by multiple features such as increased expression of senescence-associated β-galactosidase activity (SA β-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration. Senescent cells influence the neighboring cells via numerous secreted factors which form the senescence-associated secreted phenotype (SASP). Lipids are emerging as a key component of SASP that can control tissue homeostasis. Arachidonic acid-derived lipids have been shown to accumulate within senescent cells, specifically 15d-PGJ2, which is an electrophilic lipid produced by the non-enzymatic dehydration of the prostaglandin PGD2. This study shows that 15d-PGJ2 is also released by Doxo-induced senescent cells as an SASP factor. Treatment of skeletal muscle myoblasts with the conditioned medium from these senescent cells inhibits myoblast fusion during differentiation. Inhibition of L-PTGDS, the enzyme that synthesizes PGD2, diminishes the release of 15d-PGJ2 by senescent cells and restores muscle differentiation. We further show that this lipid post-translationally modifies Cys184 of HRas in C2C12 mouse skeletal myoblasts, causing a reduction in the localization of HRas to the Golgi, increased HRas binding to Ras Binding Domain (RBD) of RAF Kinase (RAF-RBD), and activation of cellular Mitogen Activated Protein (MAP) kinase–Extracellular Signal Regulated Kinase (Erk) signaling (but not the Akt signaling). Mutating C184 of HRas prevents the ability of 15d-PGJ2 to inhibit the differentiation of muscle cells and control the activity of HRas. This work shows that 15d-PGJ2 released from senescent cells could be targeted to restore muscle homeostasis after chemotherapy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Duk-Su Koh, Anastasiia Stratiievska ... Sharona E Gordon
    Tools and Resources

    Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.