Rationally derived inhibitors of hepatitis C virus (HCV) p7 channel activity reveal prospect for bimodal antiviral therapy

Abstract

Since the 1960s, a single class of agent has been licensed targeting virus-encoded ion channels, or 'viroporins', contrasting the success of channel blocking drugs in other areas of medicine. Although resistance arose to these prototypic adamantane inhibitors of the influenza A virus (IAV) M2 proton channel, a growing number of clinically and economically important viruses are now recognised to encode essential viroporins providing potential targets for modern drug discovery. We describe the first rationally designed viroporin inhibitor with a comprehensive structure-activity relationship (SAR). This step-change in understanding not only revealed a second biological function for the p7 viroporin from hepatitis C virus (HCV) during virus entry, but also enabled the synthesis of a labelled tool compound that retained biological activity. Hence, p7 inhibitors (p7i) represent a unique class of HCV antiviral targeting both the spread and establishment of infection, as well as a precedent for future viroporin-targeted drug discovery.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures.

Article and author information

Author details

  1. Joseph Shaw

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Rajendra Gosein

    School of Chemistry, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Monoj Mon Kalita

    Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8037-8489
  4. Toshana L Foster

    Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Jayakanth Kankanala

    Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. D Ram Mahato

    Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  7. Sonia Abas

    School of Chemistry, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Barnabas J King

    School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8432-2282
  9. Claire Scott

    Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Emma Brown

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Matthew J Bentham

    Leeds Institute of Medical Research, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Laura Wetherill

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Abigail Bloy

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Adel Samson

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Mark Harris

    School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  16. Jamel Mankouri

    School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  17. David Rowlands

    School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  18. Andrew Macdonald

    School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Alexander W Tarr

    School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1009-0823
  20. Wolfgang B Fischer

    Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
    Competing interests
    The authors declare that no competing interests exist.
  21. Richard Foster

    School of Chemistry, University of Leeds, Leeds, United Kingdom
    For correspondence
    r.foster@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  22. Stephen Griffin

    Leeds Institute of Medical Research, School of Medicine, University of Leeds, Leeds, United Kingdom
    For correspondence
    s.d.c.griffin@leeds.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7233-5243

Funding

Medical Research Council (G0700124)

  • Matthew J Bentham
  • Laura Wetherill
  • Stephen Griffin

Yorkshire Cancer Research Pump-Priming Award (PP025)

  • Toshana L Foster
  • Stephen Griffin

Leeds Teaching Hospitals Charitable Foundation (9R11/14-03)

  • Laura Wetherill
  • Stephen Griffin

Medical Research Council (MC.PC.13066)

  • Joseph Shaw
  • Rajendra Gosein
  • Richard Foster
  • Stephen Griffin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Melanie M Brinkmann, Technische Universität Braunschweig, Germany

Publication history

  1. Received: October 8, 2019
  2. Accepted: November 9, 2020
  3. Accepted Manuscript published: November 10, 2020 (version 1)
  4. Accepted Manuscript updated: November 12, 2020 (version 2)
  5. Version of Record published: December 3, 2020 (version 3)
  6. Version of Record updated: December 3, 2020 (version 4)

Copyright

© 2020, Shaw et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,291
    Page views
  • 163
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joseph Shaw
  2. Rajendra Gosein
  3. Monoj Mon Kalita
  4. Toshana L Foster
  5. Jayakanth Kankanala
  6. D Ram Mahato
  7. Sonia Abas
  8. Barnabas J King
  9. Claire Scott
  10. Emma Brown
  11. Matthew J Bentham
  12. Laura Wetherill
  13. Abigail Bloy
  14. Adel Samson
  15. Mark Harris
  16. Jamel Mankouri
  17. David Rowlands
  18. Andrew Macdonald
  19. Alexander W Tarr
  20. Wolfgang B Fischer
  21. Richard Foster
  22. Stephen Griffin
(2020)
Rationally derived inhibitors of hepatitis C virus (HCV) p7 channel activity reveal prospect for bimodal antiviral therapy
eLife 9:e52555.
https://doi.org/10.7554/eLife.52555
  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Brandon Wey-Hung Liauw et al.
    Research Article

    Activation of G protein-coupled receptors (GPCRs) is an allosteric process. It involves conformational coupling between the orthosteric ligand binding site and the G protein binding site. Factors that bind at non-cognate ligand binding sites to alter the allosteric activation process are classified as allosteric modulators and represent a promising class of therapeutics with distinct modes of binding and action. For many receptors, how modulation of signaling is represented at the structural level is unclear. Here, we developed FRET sensors to quantify receptor modulation at each of the three structural domains of metabotropic glutamate receptor 2 (mGluR2). We identified the conformational fingerprint for several allosteric modulators in live cells. This approach enabled us to derive a receptor-centric representation of allosteric modulation and to correlate structural modulation to the standard signaling modulation metrics. Single-molecule FRET analysis revealed that a NAM increases the occupancy of one of the intermediate states while a PAM increases the occupancy of the active state. Moreover, we found that the effect of allosteric modulators on the receptor dynamics is complex and depend on the orthosteric ligand. Collectively, our findings provide a structural mechanism of allosteric modulation in mGluR2 and suggest possible strategies for design of future modulators.

    1. Biochemistry and Chemical Biology
    Eugene Serebryany et al.
    Research Article Updated

    Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol’s molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol’s primary target was not the native, unfolded, or final aggregated states of the protein; rather, we propose that it was the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.