1. Neuroscience
Download icon

Brain aging comprises many modes of structural and functional change with distinct genetic and biophysical associations

  1. Stephen M Smith  Is a corresponding author
  2. Lloyd T Elliott
  3. Fidel Alfaro-Almagro
  4. Paul McCarthy
  5. Thomas E Nichols
  6. Gwenaëlle Douaud
  7. Karla L Miller
  1. University of Oxford, United Kingdom
  2. Simon Fraser University, Canada
Research Article
  • Cited 19
  • Views 4,163
  • Annotations
Cite this article as: eLife 2020;9:e52677 doi: 10.7554/eLife.52677
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Brain imaging can be used to study how individuals’ brains are aging, compared against population norms. This can inform on aspects of brain health; for example, smoking and blood pressure can be seen to accelerate brain aging. Typically, a single 'brain age' is estimated per subject, whereas here we we identified 62 modes of subject variability, from 21,407 subjects' multimodal brain imaging data in UK Biobank. The modes represent different aspects of brain aging, showing distinct patterns of functional and structural brain change, and distinct patterns of association with genetics, lifestyle, cognition, physical measures and disease. While conventional brain-age modelling found no genetic associations, 34 modes had genetic associations. We suggest that it is important not to treat brain aging as a single homogeneous process, and that modelling of distinct patterns of structural and functional change will reveal more biologically meaningful markers of brain aging in health and disease.

Data availability

All source data is available from UK Biobank, as described in Section 5. That section also describes the full availability of all of our code used for this work, and additional supplementary materials. https://www.fmrib.ox.ac.uk/ukbiobank/BrainAgingModes/

The following previously published data sets were used

Article and author information

Author details

  1. Stephen M Smith

    Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    For correspondence
    steve@fmrib.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8166-069X
  2. Lloyd T Elliott

    Department of Statistics and Actuarial Science, Simon Fraser University, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Fidel Alfaro-Almagro

    Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul McCarthy

    Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas E Nichols

    Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Gwenaëlle Douaud

    Centre for Functional MRI of the Brain (FMRIB), Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1981-391X
  7. Karla L Miller

    Wellcome Centre For Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2511-3189

Funding

Wellcome (203139/Z/16/Z)

  • Stephen M Smith
  • Karla L Miller

Wellcome (098369/Z/12/Z)

  • Stephen M Smith

Wellcome (215573/Z/19/Z)

  • Stephen M Smith

Wellcome (202788/Z/16/Z)

  • Karla L Miller

Medical Research Council (MR/K006673/1)

  • Gwenaëlle Douaud

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The UK Biobank has approval from the North West Multi-centre Research Ethics Committee (MREC) to obtain and disseminate data and samples from the participants (http://www.ukbiobank.ac.uk/ethics/), and these ethical regulations cover the work in this study. Written informed consent was obtained from all participants.

Reviewing Editor

  1. Jonathan Erik Peelle, Washington University in St. Louis, United States

Publication history

  1. Received: October 11, 2019
  2. Accepted: March 2, 2020
  3. Accepted Manuscript published: March 5, 2020 (version 1)
  4. Version of Record published: April 16, 2020 (version 2)

Copyright

© 2020, Smith et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,163
    Page views
  • 684
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Giada Dirupo et al.
    Research Article Updated

    Healthcare providers often underestimate patients’ pain, sometimes even when aware of their reports. This could be the effect of experience reducing sensitivity to others pain, or distrust toward patients’ self-evaluations. Across multiple experiments (375 participants), we tested whether senior medical students differed from younger colleagues and lay controls in the way they assess people’s pain and take into consideration their feedback. We found that medical training affected the sensitivity to pain faces, an effect shown by the lower ratings and highlighted by a decrease in neural response of the insula and cingulate cortex. Instead, distrust toward the expressions’ authenticity affected the processing of feedbacks, by decreasing activity in the ventral striatum whenever patients’ self-reports matched participants’ evaluations, and by promoting strong reliance on the opinion of other doctors. Overall, our study underscores the multiple processes which might influence the evaluation of others’ pain at the early stages of medical career.

    1. Neuroscience
    Eun Ju Shin et al.
    Research Article Updated

    Studies in rats, monkeys, and humans have found action-value signals in multiple regions of the brain. These findings suggest that action-value signals encoded in these brain structures bias choices toward higher expected rewards. However, previous estimates of action-value signals might have been inflated by serial correlations in neural activity and also by activity related to other decision variables. Here, we applied several statistical tests based on permutation and surrogate data to analyze neural activity recorded from the striatum, frontal cortex, and hippocampus. The results show that previously identified action-value signals in these brain areas cannot be entirely accounted for by concurrent serial correlations in neural activity and action value. We also found that neural activity related to action value is intermixed with signals related to other decision variables. Our findings provide strong evidence for broadly distributed neural signals related to action value throughout the brain.