Recruitment of mRNAs to P granules by condensation with intrinsically-disordered proteins

  1. Chih-Yung S Lee
  2. Andrea Putnam
  3. Tu Lu
  4. ShuaiXin He
  5. John Paul T Ouyang
  6. Geraldine Seydoux  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States

Abstract

RNA granules are protein/RNA condensates. How specific mRNAs are recruited to cytoplasmic RNA granules is not known. Here we characterize the transcriptome and assembly of P granules, RNA granules in the C. elegans germ plasm. We find that P granules recruit mRNAs by condensation with the disordered protein MEG-3. MEG-3 traps mRNAs into non-dynamic condensates in vitro and binds to ~500 mRNAs in vivo in a sequence-independent manner that favors embryonic mRNAs with low ribosome coverage. Translational stress causes additional mRNAs to localize to P granules and translational activation correlates with P granule exit for two mRNAs coding for germ cell fate regulators. Localization to P granules is not required for translational repression but is required to enrich mRNAs in the germ lineage for robust germline development. Our observations reveal similarities between P granules and stress granules and identify intrinsically-disordered proteins as drivers of RNA condensation during P granule assembly.

Data availability

Sequencing data have been deposited in GEO under accession number GSE139881,GSE139878, GSE139879 and GSE139880.Description of iCLIP analysis and additional python codes are deposited in Github :https://github.com/fishhead1978/iCLIP_2019

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Chih-Yung S Lee

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  2. Andrea Putnam

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  3. Tu Lu

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5697-300X
  4. ShuaiXin He

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  5. John Paul T Ouyang

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Geraldine Seydoux

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    gseydoux@jhmi.edu
    Competing interests
    Geraldine Seydoux, serves on the Scientific Advisory Board of Dewpoint Therapeutics, Inc.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8257-0493

Funding

National Institutes of Health (R37 HD37047)

  • Geraldine Seydoux

Howard Hughes Medical Institute

  • Geraldine Seydoux

National Institutes of Health (T32 GM007445)

  • John Paul T Ouyang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Timothy W Nilsen, Case Western Reserve University, United States

Publication history

  1. Received: October 19, 2019
  2. Accepted: January 23, 2020
  3. Accepted Manuscript published: January 24, 2020 (version 1)
  4. Version of Record published: February 7, 2020 (version 2)

Copyright

© 2020, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,566
    Page views
  • 1,002
    Downloads
  • 58
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chih-Yung S Lee
  2. Andrea Putnam
  3. Tu Lu
  4. ShuaiXin He
  5. John Paul T Ouyang
  6. Geraldine Seydoux
(2020)
Recruitment of mRNAs to P granules by condensation with intrinsically-disordered proteins
eLife 9:e52896.
https://doi.org/10.7554/eLife.52896