C-Mannosylation supports folding and enhances stability of thrombospondin repeats

Abstract

Previous studies demonstrated importance of C-mannosylation for efficient protein secretion. To study its impact on protein folding and stability, we analyzed both C-mannosylated and non-C-mannosylated thrombospondin type 1 repeats (TSRs) of netrin receptor UNC-5. In absence of C-mannosylation, UNC-5 TSRs could only be obtained at low temperature and a significant proportion displayed incorrect intermolecular disulfide bridging, which was hardly observed when C-mannosylated. Glycosylated TSRs exhibited higher resistance to thermal and reductive denaturation processes and the presence of C-mannoses promoted the oxidative folding of a reduced and denatured TSR in vitro. Molecular dynamics simulations supported the experimental studies and showed that C-mannoses can be involved in intramolecular hydrogen bonding and limit the flexibility of the TSR tryptophan-arginine ladder. We propose that in the endoplasmic reticulum folding process, C-mannoses orient the underlying tryptophan residues and facilitate the formation of the tryptophan arginine ladder, thereby influencing the positioning of cysteines and disulfide bridging.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 3, 4 and 5

Article and author information

Author details

  1. Aleksandra Shcherbakova

    Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4175-547X
  2. Matthias Preller

    Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7784-4012
  3. Manuel H Taft

    Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5853-8629
  4. Jordi Pujols

    Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Salvador Ventura

    Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9652-6351
  6. Birgit Tiemann

    Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Falk F R Buettner

    Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8468-1223
  8. Hans Bakker

    Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
    For correspondence
    bakker.hans@mh-hannover.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1364-9154

Funding

Deutsche Forschungsgemeinschaft (FOR2509 BA 4091/6-1)

  • Hans Bakker

Deutsche Forschungsgemeinschaft (BA 4091/5-1)

  • Hans Bakker

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Shcherbakova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,637
    views
  • 340
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aleksandra Shcherbakova
  2. Matthias Preller
  3. Manuel H Taft
  4. Jordi Pujols
  5. Salvador Ventura
  6. Birgit Tiemann
  7. Falk F R Buettner
  8. Hans Bakker
(2019)
C-Mannosylation supports folding and enhances stability of thrombospondin repeats
eLife 8:e52978.
https://doi.org/10.7554/eLife.52978

Share this article

https://doi.org/10.7554/eLife.52978

Further reading

    1. Biochemistry and Chemical Biology
    Aleksandar Bartolome, Julia C Heiby ... Alessandro Ori
    Tools and Resources

    Proteasomes are essential molecular machines responsible for the degradation of proteins in eukaryotic cells. Altered proteasome activity has been linked to neurodegeneration, auto-immune disorders and cancer. Despite the relevance for human disease and drug development, no method currently exists to monitor proteasome composition and interactions in vivo in animal models. To fill this gap, we developed a strategy based on tagging of proteasomes with promiscuous biotin ligases and generated a new mouse model enabling the quantification of proteasome interactions by mass spectrometry. We show that biotin ligases can be incorporated in fully assembled proteasomes without negative impact on their activity. We demonstrate the utility of our method by identifying novel proteasome-interacting proteins, charting interactomes across mouse organs, and showing that proximity-labeling enables the identification of both endogenous and small-molecule-induced proteasome substrates.

    1. Biochemistry and Chemical Biology
    Brennan J Wadsworth, Marina Leiwe ... Randall S Johnson
    Research Article

    Several metabolites have been shown to have independent and at times unexpected biological effects outside of their metabolic pathways. These include succinate, lactate, fumarate, and 2-hydroxyglutarate. 2-Hydroxybutyrate (2HB) is a byproduct of endogenous cysteine synthesis, produced during periods of cellular stress. 2HB rises acutely after exercise; it also rises during infection and is also chronically increased in a number of metabolic disorders. We show here that 2HB inhibits branched-chain aminotransferase enzymes, which in turn triggers a SIRT4-dependent shift in the compartmental abundance of protein ADP-ribosylation. The 2HB-induced decrease in nuclear protein ADP-ribosylation leads to a C/EBPβ-mediated transcriptional response in the branched-chain amino acid degradation pathway. This response to 2HB exposure leads to an improved oxidative capacity in vitro. We found that repeated injection with 2HB can replicate the improvement to oxidative capacity that occurs following exercise training. Together, we show that 2-HB regulates fundamental aspects of skeletal muscle metabolism.