Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity

  1. Nairita Maitra
  2. Chong He
  3. Heidi M Blank
  4. Mitsuhiro Tsuchiya
  5. Birgit Schilling
  6. Matt Kaeberlein
  7. Rodolfo Aramayo
  8. Brian K Kennedy  Is a corresponding author
  9. Michael Polymenis  Is a corresponding author
  1. Texas A&M University, United States
  2. Buck Institute for Research on Aging, United States
  3. University of Washington, United States
  4. Buck Institute For Research On Aging, United States
  5. National University of Singapore, Singapore

Abstract

A long-standing problem is how cells that lack one of the highly similar ribosomal proteins (RPs) often display distinct phenotypes. Yeast and other organisms live longer when they lack specific ribosomal proteins, especially of the large 60S subunit of the ribosome. However, longevity is neither associated with the generation time of RP deletion mutants nor with bulk inhibition of protein synthesis. Here, we queried actively dividing RP mutants through the cell cycle. Our data link transcriptional, translational, and metabolic changes to phenotypes associated with the loss of paralogous RPs. We uncovered translational control of transcripts encoding enzymes of methionine and serine metabolism, which are part of one-carbon (1C) pathways. Cells lacking Rpl22Ap, which are long-lived, have lower levels of metabolites associated with 1C metabolism. Loss of 1C enzymes increased the longevity of wild type cells. 1C pathways exist in all organisms and targeting the relevant enzymes could represent longevity interventions.

Data availability

Sequencing data have been deposited in GEO under accession code GSE135336. All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Nairita Maitra

    Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  2. Chong He

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    No competing interests declared.
  3. Heidi M Blank

    Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  4. Mitsuhiro Tsuchiya

    Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  5. Birgit Schilling

    Buck Institute For Research On Aging, Novato, United States
    Competing interests
    No competing interests declared.
  6. Matt Kaeberlein

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    Matt Kaeberlein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-3421
  7. Rodolfo Aramayo

    Biology, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9702-6204
  8. Brian K Kennedy

    National University of Singapore, Singapore, Singapore
    For correspondence
    bkennedy@nus.edu.sg
    Competing interests
    No competing interests declared.
  9. Michael Polymenis

    Biochemistry and Biophysics, Texas A&M University, College Station, United States
    For correspondence
    polymenis@tamu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1507-0936

Funding

National Institutes of Health (GM123139)

  • Rodolfo Aramayo
  • Brian K Kennedy
  • Michael Polymenis

National Center for Research Resources (1S10 OD016281)

  • Birgit Schilling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeff Smith, University of Virginia, United States

Version history

  1. Received: October 29, 2019
  2. Accepted: May 20, 2020
  3. Accepted Manuscript published: May 20, 2020 (version 1)
  4. Version of Record published: June 1, 2020 (version 2)

Copyright

© 2020, Maitra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,544
    views
  • 476
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nairita Maitra
  2. Chong He
  3. Heidi M Blank
  4. Mitsuhiro Tsuchiya
  5. Birgit Schilling
  6. Matt Kaeberlein
  7. Rodolfo Aramayo
  8. Brian K Kennedy
  9. Michael Polymenis
(2020)
Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity
eLife 9:e53127.
https://doi.org/10.7554/eLife.53127

Share this article

https://doi.org/10.7554/eLife.53127

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Lisa Baumgartner, Jonathan J Ipsaro ... Julius Brennecke
    Research Advance

    Members of the diverse heterochromatin protein 1 (HP1) family play crucial roles in heterochromatin formation and maintenance. Despite the similar affinities of their chromodomains for di- and tri-methylated histone H3 lysine 9 (H3K9me2/3), different HP1 proteins exhibit distinct chromatin-binding patterns, likely due to interactions with various specificity factors. Previously, we showed that the chromatin-binding pattern of the HP1 protein Rhino, a crucial factor of the Drosophila PIWI-interacting RNA (piRNA) pathway, is largely defined by a DNA sequence-specific C2H2 zinc finger protein named Kipferl (Baumgartner et al., 2022). Here, we elucidate the molecular basis of the interaction between Rhino and its guidance factor Kipferl. Through phylogenetic analyses, structure prediction, and in vivo genetics, we identify a single amino acid change within Rhino’s chromodomain, G31D, that does not affect H3K9me2/3 binding but disrupts the interaction between Rhino and Kipferl. Flies carrying the rhinoG31D mutation phenocopy kipferl mutant flies, with Rhino redistributing from piRNA clusters to satellite repeats, causing pronounced changes in the ovarian piRNA profile of rhinoG31D flies. Thus, Rhino’s chromodomain functions as a dual-specificity module, facilitating interactions with both a histone mark and a DNA-binding protein.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.