Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity

  1. Nairita Maitra
  2. Chong He
  3. Heidi M Blank
  4. Mitsuhiro Tsuchiya
  5. Birgit Schilling
  6. Matt Kaeberlein
  7. Rodolfo Aramayo
  8. Brian K Kennedy  Is a corresponding author
  9. Michael Polymenis  Is a corresponding author
  1. Texas A&M University, United States
  2. Buck Institute for Research on Aging, United States
  3. University of Washington, United States
  4. Buck Institute For Research On Aging, United States
  5. National University of Singapore, Singapore

Abstract

A long-standing problem is how cells that lack one of the highly similar ribosomal proteins (RPs) often display distinct phenotypes. Yeast and other organisms live longer when they lack specific ribosomal proteins, especially of the large 60S subunit of the ribosome. However, longevity is neither associated with the generation time of RP deletion mutants nor with bulk inhibition of protein synthesis. Here, we queried actively dividing RP mutants through the cell cycle. Our data link transcriptional, translational, and metabolic changes to phenotypes associated with the loss of paralogous RPs. We uncovered translational control of transcripts encoding enzymes of methionine and serine metabolism, which are part of one-carbon (1C) pathways. Cells lacking Rpl22Ap, which are long-lived, have lower levels of metabolites associated with 1C metabolism. Loss of 1C enzymes increased the longevity of wild type cells. 1C pathways exist in all organisms and targeting the relevant enzymes could represent longevity interventions.

Data availability

Sequencing data have been deposited in GEO under accession code GSE135336. All data generated or analysed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Nairita Maitra

    Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  2. Chong He

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    No competing interests declared.
  3. Heidi M Blank

    Biochemistry and Biophysics, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
  4. Mitsuhiro Tsuchiya

    Pathology, University of Washington, Seattle, United States
    Competing interests
    No competing interests declared.
  5. Birgit Schilling

    Buck Institute For Research On Aging, Novato, United States
    Competing interests
    No competing interests declared.
  6. Matt Kaeberlein

    Department of Pathology, University of Washington, Seattle, United States
    Competing interests
    Matt Kaeberlein, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1311-3421
  7. Rodolfo Aramayo

    Biology, Texas A&M University, College Station, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9702-6204
  8. Brian K Kennedy

    National University of Singapore, Singapore, Singapore
    For correspondence
    bkennedy@nus.edu.sg
    Competing interests
    No competing interests declared.
  9. Michael Polymenis

    Biochemistry and Biophysics, Texas A&M University, College Station, United States
    For correspondence
    polymenis@tamu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1507-0936

Funding

National Institutes of Health (GM123139)

  • Rodolfo Aramayo
  • Brian K Kennedy
  • Michael Polymenis

National Center for Research Resources (1S10 OD016281)

  • Birgit Schilling

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jeff Smith, University of Virginia, United States

Version history

  1. Received: October 29, 2019
  2. Accepted: May 20, 2020
  3. Accepted Manuscript published: May 20, 2020 (version 1)
  4. Version of Record published: June 1, 2020 (version 2)

Copyright

© 2020, Maitra et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,369
    Page views
  • 454
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nairita Maitra
  2. Chong He
  3. Heidi M Blank
  4. Mitsuhiro Tsuchiya
  5. Birgit Schilling
  6. Matt Kaeberlein
  7. Rodolfo Aramayo
  8. Brian K Kennedy
  9. Michael Polymenis
(2020)
Translational control of one-carbon metabolism underpins ribosomal protein phenotypes in cell division and longevity
eLife 9:e53127.
https://doi.org/10.7554/eLife.53127

Further reading

    1. Chromosomes and Gene Expression
    Daniël P Melters, Keir C Neuman ... Yamini Dalal
    Research Article

    Chromatin accessibility is modulated in a variety of ways to create open and closed chromatin states, both of which are critical for eukaryotic gene regulation. At the single molecule level, how accessibility is regulated of the chromatin fiber composed of canonical or variant nucleosomes is a fundamental question in the field. Here, we developed a single-molecule tracking method where we could analyze thousands of canonical H3 and centromeric variant nucleosomes imaged by high-speed atomic force microscopy. This approach allowed us to investigate how changes in nucleosome dynamics in vitro inform us about transcriptional potential in vivo. By high-speed atomic force microscopy, we tracked chromatin dynamics in real time and determined the mean square displacement and diffusion constant for the variant centromeric CENP-A nucleosome. Furthermore, we found that an essential kinetochore protein CENP-C reduces the diffusion constant and mobility of centromeric nucleosomes along the chromatin fiber. We subsequently interrogated how CENP-C modulates CENP-A chromatin dynamics in vivo. Overexpressing CENP-C resulted in reduced centromeric transcription and impaired loading of new CENP-A molecules. From these data, we speculate that factors altering nucleosome mobility in vitro, also correspondingly alter transcription in vivo. Subsequently, we propose a model in which variant nucleosomes encode their own diffusion kinetics and mobility, and where binding partners can suppress or enhance nucleosome mobility.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Maikel Castellano-Pozo, Georgios Sioutas ... Enrique Martinez-Perez
    Short Report Updated

    The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin–DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.