TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration

  1. Amrutha Patkunarajah
  2. Jeffrey H Stear
  3. Mirko Moroni
  4. Lioba Schroeter
  5. Jedrzej Blaszkiewicz
  6. Jacqueline LE Tearle
  7. Charles D Cox
  8. Carina Fuerst
  9. Oscar Sanchez-Carranza
  10. Maria del Angel Ocana Fernandez
  11. Raluca Fleischer
  12. Murat Eravci
  13. Christoph Weise
  14. Boris Martinac
  15. Maté Biro
  16. Gary R Lewin
  17. Kate Poole  Is a corresponding author
  1. University of New South Wales, Australia
  2. Max Delbruck Center for Molecular Medicine, Germany
  3. Victor Chang Cardiac Research Institute, Australia
  4. Freie Universitat Berlin, Germany
  5. EMBL Australia, Australia
  6. Max Delbrück Center for Molecular Medicine, Germany

Abstract

Mechanoelectrical transduction is a cellular signalling pathway where physical stimuli are converted into electro-chemical signals by mechanically activated ion channels. We describe here the presence of mechanically activated currents in melanoma cells that are dependent on TMEM87a, which we have renamed Elkin1. Heterologous expression of this protein in PIEZO1-deficient cells, that exhibit no baseline mechanosensitivity, is sufficient to reconstitute mechanically activated currents. Melanoma cells lacking functional Elkin1 exhibit defective mechanoelectrical transduction, decreased motility and increased dissociation from organotypic spheroids. By analysing cell adhesion properties, we demonstrate that Elkin1 deletion is associated with increased cell-substrate adhesion and decreased homotypic cell-cell adhesion strength. We therefore conclude that Elkin1 supports a PIEZO1-independent mechanoelectrical transduction pathway and modulates cellular adhesions and regulates melanoma cell migration and cell-cell interactions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data file has been provided for figures 1, 3, 4, 6, 7, 8. Proteomics data provided as supplementary table 1

Article and author information

Author details

  1. Amrutha Patkunarajah

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeffrey H Stear

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Mirko Moroni

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Lioba Schroeter

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Jedrzej Blaszkiewicz

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jacqueline LE Tearle

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Charles D Cox

    Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Carina Fuerst

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Oscar Sanchez-Carranza

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Maria del Angel Ocana Fernandez

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Raluca Fleischer

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Murat Eravci

    Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Christoph Weise

    Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Boris Martinac

    Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8422-7082
  15. Maté Biro

    Single Molecule Science node, School of Medical Sciences, EMBL Australia, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5852-3726
  16. Gary R Lewin

    Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2890-6352
  17. Kate Poole

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    For correspondence
    k.poole@unsw.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0879-6093

Funding

National Health and Medical Research Council (APP1138595)

  • Boris Martinac
  • Maté Biro
  • Kate Poole

Deutsche Forschungsgemeinschaft (SFB958,project A09)

  • Gary R Lewin
  • Kate Poole

National Health and Medical Research Council (APP1135974)

  • Boris Martinac

Deutsche Forschungsgemeinschaft (SFB958,project Z03)

  • Murat Eravci
  • Christoph Weise

Humboldt Foundation (Postdoctoral Fellowship)

  • Mirko Moroni

Max Delbruck Center (Cecile Vogt Fellowship)

  • Kate Poole

Department of Education, Australian Government (RTP scholarship)

  • Amrutha Patkunarajah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Patkunarajah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,522
    views
  • 695
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amrutha Patkunarajah
  2. Jeffrey H Stear
  3. Mirko Moroni
  4. Lioba Schroeter
  5. Jedrzej Blaszkiewicz
  6. Jacqueline LE Tearle
  7. Charles D Cox
  8. Carina Fuerst
  9. Oscar Sanchez-Carranza
  10. Maria del Angel Ocana Fernandez
  11. Raluca Fleischer
  12. Murat Eravci
  13. Christoph Weise
  14. Boris Martinac
  15. Maté Biro
  16. Gary R Lewin
  17. Kate Poole
(2020)
TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration
eLife 9:e53308.
https://doi.org/10.7554/eLife.53308

Share this article

https://doi.org/10.7554/eLife.53308

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.