TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration

  1. Amrutha Patkunarajah
  2. Jeffrey H Stear
  3. Mirko Moroni
  4. Lioba Schroeter
  5. Jedrzej Blaszkiewicz
  6. Jacqueline LE Tearle
  7. Charles D Cox
  8. Carina Fuerst
  9. Oscar Sanchez-Carranza
  10. María del Ángel Ocaña Fernández
  11. Raluca Fleischer
  12. Murat Eravci
  13. Christoph Weise
  14. Boris Martinac
  15. Maté Biro
  16. Gary R Lewin
  17. Kate Poole  Is a corresponding author
  1. University of New South Wales, Australia
  2. Max Delbruck Center for Molecular Medicine, Germany
  3. Victor Chang Cardiac Research Institute, Australia
  4. Freie Universitat Berlin, Germany
  5. EMBL Australia, Australia
  6. Max Delbrück Center for Molecular Medicine, Germany

Abstract

Mechanoelectrical transduction is a cellular signalling pathway where physical stimuli are converted into electro-chemical signals by mechanically activated ion channels. We describe here the presence of mechanically activated currents in melanoma cells that are dependent on TMEM87a, which we have renamed Elkin1. Heterologous expression of this protein in PIEZO1-deficient cells, that exhibit no baseline mechanosensitivity, is sufficient to reconstitute mechanically activated currents. Melanoma cells lacking functional Elkin1 exhibit defective mechanoelectrical transduction, decreased motility and increased dissociation from organotypic spheroids. By analysing cell adhesion properties, we demonstrate that Elkin1 deletion is associated with increased cell-substrate adhesion and decreased homotypic cell-cell adhesion strength. We therefore conclude that Elkin1 supports a PIEZO1-independent mechanoelectrical transduction pathway and modulates cellular adhesions and regulates melanoma cell migration and cell-cell interactions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data file has been provided for figures 1, 3, 4, 6, 7, 8. Proteomics data provided as supplementary table 1

Article and author information

Author details

  1. Amrutha Patkunarajah

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeffrey H Stear

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Mirko Moroni

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Lioba Schroeter

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Jedrzej Blaszkiewicz

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jacqueline LE Tearle

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Charles D Cox

    Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Carina Fuerst

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Oscar Sanchez-Carranza

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. María del Ángel Ocaña Fernández

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Raluca Fleischer

    Department of Neuroscience, Max Delbruck Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Murat Eravci

    Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Christoph Weise

    Institute of Chemistry and Biochemistry, Freie Universitat Berlin, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Boris Martinac

    Molecular Cardiology and Biophysics, Victor Chang Cardiac Research Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8422-7082
  15. Maté Biro

    Single Molecule Science node, School of Medical Sciences, EMBL Australia, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5852-3726
  16. Gary R Lewin

    Neuroscience, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2890-6352
  17. Kate Poole

    School of Medical Sciences, University of New South Wales, Sydney, Australia
    For correspondence
    k.poole@unsw.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0879-6093

Funding

National Health and Medical Research Council (APP1138595)

  • Boris Martinac
  • Maté Biro
  • Kate Poole

Deutsche Forschungsgemeinschaft (SFB958,project A09)

  • Gary R Lewin
  • Kate Poole

National Health and Medical Research Council (APP1135974)

  • Boris Martinac

Deutsche Forschungsgemeinschaft (SFB958,project Z03)

  • Murat Eravci
  • Christoph Weise

Humboldt Foundation (Postdoctoral Fellowship)

  • Mirko Moroni

Max Delbruck Center (Cecile Vogt Fellowship)

  • Kate Poole

Department of Education, Australian Government (RTP scholarship)

  • Amrutha Patkunarajah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Patkunarajah et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,330
    views
  • 677
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amrutha Patkunarajah
  2. Jeffrey H Stear
  3. Mirko Moroni
  4. Lioba Schroeter
  5. Jedrzej Blaszkiewicz
  6. Jacqueline LE Tearle
  7. Charles D Cox
  8. Carina Fuerst
  9. Oscar Sanchez-Carranza
  10. María del Ángel Ocaña Fernández
  11. Raluca Fleischer
  12. Murat Eravci
  13. Christoph Weise
  14. Boris Martinac
  15. Maté Biro
  16. Gary R Lewin
  17. Kate Poole
(2020)
TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration
eLife 9:e53308.
https://doi.org/10.7554/eLife.53308

Share this article

https://doi.org/10.7554/eLife.53308

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Raphael Vidal, Eoin Leen ... Gabriele Büchel
    Research Article

    MYC family oncoproteins regulate the expression of a large number of genes and broadly stimulate elongation by RNA polymerase II (RNAPII). While the factors that control the chromatin association of MYC proteins are well understood, much less is known about how interacting proteins mediate MYC’s effects on transcription. Here, we show that TFIIIC, an architectural protein complex that controls the three-dimensional chromatin organisation at its target sites, binds directly to the amino-terminal transcriptional regulatory domain of MYCN. Surprisingly, TFIIIC has no discernible role in MYCN-dependent gene expression and transcription elongation. Instead, MYCN and TFIIIC preferentially bind to promoters with paused RNAPII and globally limit the accumulation of non-phosphorylated RNAPII at promoters. Consistent with its ubiquitous role in transcription, MYCN broadly participates in hubs of active promoters. Depletion of TFIIIC further increases MYCN localisation to these hubs. This increase correlates with a failure of the nuclear exosome and BRCA1, both of which are involved in nascent RNA degradation, to localise to active promoters. Our data suggest that MYCN and TFIIIC exert an censoring function in early transcription that limits promoter accumulation of inactive RNAPII and facilitates promoter-proximal degradation of nascent RNA.

    1. Cancer Biology
    Yumin Fu, Xinyu Guo ... Lianxin Liu
    Review Article

    Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.