ARID1A loss in adult hepatocytes activates β-catenin-mediated erythropoietin transcription

  1. Rozenn Riou
  2. Meriem Ladli
  3. Sabine Gerbal-Chaloin
  4. Pascale Bossard
  5. Angélique Gougelet
  6. Cécile Godard
  7. Robin Loesch
  8. Isabelle Lagoutte
  9. Franck Lager
  10. Julien Calderaro
  11. Alexandre Dos Santos
  12. Zhong Wang
  13. Frédérique Verdier
  14. Sabine Colnot  Is a corresponding author
  1. Institut National de la Santé et de la Recherche Médicale, France
  2. Assistance Publique Hôpitaux de Paris, France
  3. University of Michigan, United States

Abstract

Erythropoietin (EPO) is a key regulator of erythropoiesis. The embryonic liver is the main site of erythropoietin synthesis, after which the kidney takes over. The adult liver retains the ability to express EPO, and we discovered here new players of this transcription, distinct from the classical hypoxia-inducible factor pathway. In mice genetically-invalidated in hepatocytes for the chromatin remodeler Arid1a, and for Apc, the major silencer of Wnt pathway, chromatin was more accessible and histone marks turned into active ones at the Epo downstream enhancer. Activating β-catenin signaling increased binding of Tcf4/β-catenin complex and upregulated its enhancer function. The loss of Arid1a together with β-catenin signaling, resulted in cell-autonomous EPO transcription in mouse and human hepatocytes. In mice with Apc-Arid1a gene invalidations in single hepatocytes, Epo de novo synthesis led to its secretion, to splenic erythropoiesis and to dramatic erythrocytosis. Thus, we identified new hepatic EPO regulation mechanism stimulating erythropoiesis.

Data availability

Microarrays have been deposited in GEO database (GSE134553) and are publicly available.All data generated or analysed during this study are included in the manuscript and supporting files. Source data excel files have been provided for Figures 1, 2, 3, 4, 5, 7, 8, 1S1,1S3,3S1,5S1,5S2,7S1.

The following data sets were generated

Article and author information

Author details

  1. Rozenn Riou

    Centre de Recherche des Cordeliers UMRS1138, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Meriem Ladli

    Institut Cochin U1016, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Sabine Gerbal-Chaloin

    IRMB U1183, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Pascale Bossard

    Institut Cochin U1016, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Angélique Gougelet

    Centre de Recherche des Cordeliers UMRS1138, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Cécile Godard

    Centre de Recherche des Cordeliers UMRS1138, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Robin Loesch

    Centre de Recherche des Cordeliers UMRS1138, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Isabelle Lagoutte

    Institut Cochin U1016, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  9. Franck Lager

    Institut Cochin U1016, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Julien Calderaro

    Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Alexandre Dos Santos

    Paul Brousse University Hospital, Institut National de la Santé et de la Recherche Médicale, Villejuif, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhong Wang

    Department of Cardiac Surgery, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8720-4609
  13. Frédérique Verdier

    Institut Cochin U1016, Institut National de la Santé et de la Recherche Médicale, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Sabine Colnot

    Centre de Recherche des Cordeliers UMRS1138, Institut National de la Santé et de la Recherche Médicale, Paris, France
    For correspondence
    sabine.colnot@inserm.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3949-9107

Funding

Institut National Du Cancer (Epigenetics and Liver Cancer)

  • Rozenn Riou
  • Angélique Gougelet
  • Cécile Godard
  • Julien Calderaro
  • Sabine Colnot

Ligue Contre le Cancer (Equipe Labellisée)

  • Rozenn Riou
  • Angélique Gougelet
  • Cécile Godard
  • Sabine Colnot

Agence Nationale de la Recherche (Labex Who Am I"; Idex "EpilivCan"")

  • Rozenn Riou
  • Angélique Gougelet
  • Cécile Godard
  • Sabine Colnot

Institut National Du Cancer (Chromaliv)

  • Rozenn Riou
  • Angélique Gougelet
  • Cécile Godard
  • Sabine Colnot

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the French government regulations. All of the animals were handled according to approved institutional animal care and use committee (Ethics Committee of Descartes University, Paris). The protocol was approved by the Ethics Committee of Descartes University, Paris (permit number APAFIS#14472). Every effort was made to minimize suffering.

Copyright

© 2020, Riou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,457
    views
  • 210
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rozenn Riou
  2. Meriem Ladli
  3. Sabine Gerbal-Chaloin
  4. Pascale Bossard
  5. Angélique Gougelet
  6. Cécile Godard
  7. Robin Loesch
  8. Isabelle Lagoutte
  9. Franck Lager
  10. Julien Calderaro
  11. Alexandre Dos Santos
  12. Zhong Wang
  13. Frédérique Verdier
  14. Sabine Colnot
(2020)
ARID1A loss in adult hepatocytes activates β-catenin-mediated erythropoietin transcription
eLife 9:e53550.
https://doi.org/10.7554/eLife.53550

Share this article

https://doi.org/10.7554/eLife.53550

Further reading

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Liza Dahal, Thomas GW Graham ... Xavier Darzacq
    Research Article

    Type II nuclear receptors (T2NRs) require heterodimerization with a common partner, the retinoid X receptor (RXR), to bind cognate DNA recognition sites in chromatin. Based on previous biochemical and overexpression studies, binding of T2NRs to chromatin is proposed to be regulated by competition for a limiting pool of the core RXR subunit. However, this mechanism has not yet been tested for endogenous proteins in live cells. Using single-molecule tracking (SMT) and proximity-assisted photoactivation (PAPA), we monitored interactions between endogenously tagged RXR and retinoic acid receptor (RAR) in live cells. Unexpectedly, we find that higher expression of RAR, but not RXR, increases heterodimerization and chromatin binding in U2OS cells. This surprising finding indicates the limiting factor is not RXR but likely its cadre of obligate dimer binding partners. SMT and PAPA thus provide a direct way to probe which components are functionally limiting within a complex TF interaction network providing new insights into mechanisms of gene regulation in vivo with implications for drug development targeting nuclear receptors.