Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages

  1. Weng Man Chong
  2. Won-Jing Wang
  3. Chien-Hui Lo
  4. Tzu-Yuan Chiu
  5. Ting-Jui Chang
  6. You-Pi Liu
  7. Barbara Tanos
  8. Gregory Mazo
  9. Meng-Fu Bryan Tsou
  10. Wann-Neng Jane
  11. T Tony Yang  Is a corresponding author
  12. Jung-Chi Liao  Is a corresponding author
  1. Academia Sinica, Taiwan, Republic of China
  2. National Yang-Ming University, Taiwan, Republic of China
  3. Institute of Cancer Research, United Kingdom
  4. Memorial Sloan Kettering Cancer Center, United States
  5. National Taiwan University, Taiwan, Republic of China

Abstract

Subdistal appendages (sDAPs) are centriolar elements observed proximal to the distal appendages (DAPs) in vertebrates. Despite their obvious presence, structural and functional understanding of sDAPs remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that, although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework of sDAPs to shed light on functional understanding, surprisingly revealing the coupling between DAPs and sDAPs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Weng Man Chong

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Won-Jing Wang

    Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9733-0839
  3. Chien-Hui Lo

    Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  4. Tzu-Yuan Chiu

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ting-Jui Chang

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  6. You-Pi Liu

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  7. Barbara Tanos

    Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Gregory Mazo

    Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Meng-Fu Bryan Tsou

    Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2159-8836
  10. Wann-Neng Jane

    Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  11. T Tony Yang

    Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
    For correspondence
    tonyyang@ntu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
  12. Jung-Chi Liao

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    For correspondence
    jcliao@iams.sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4323-6318

Funding

Ministry of Science and Technology, Taiwan (107-2112-M-001-037)

  • Weng Man Chong
  • Tzu-Yuan Chiu
  • Ting-Jui Chang
  • You-Pi Liu
  • T Tony Yang
  • Jung-Chi Liao

Ministry of Science and Technology, Taiwan (107-2313-B-001-009)

  • Weng Man Chong
  • Tzu-Yuan Chiu
  • Ting-Jui Chang
  • You-Pi Liu
  • T Tony Yang
  • Jung-Chi Liao

Academia Sinica (2317-1040300)

  • Weng Man Chong
  • Tzu-Yuan Chiu
  • Ting-Jui Chang
  • You-Pi Liu
  • T Tony Yang
  • Jung-Chi Liao

Ministry of Science and Technology, Taiwan (108-2313-B-010-001)

  • Won-Jing Wang

Ministry of Science and Technology, Taiwan (108-2628-B-010-007)

  • Won-Jing Wang

Ministry of Science and Technology, Taiwan (108-2638-B-010-001 -MY2)

  • Won-Jing Wang

National Institutes of Health (GM088253)

  • Meng-Fu Bryan Tsou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Chong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,646
    views
  • 751
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weng Man Chong
  2. Won-Jing Wang
  3. Chien-Hui Lo
  4. Tzu-Yuan Chiu
  5. Ting-Jui Chang
  6. You-Pi Liu
  7. Barbara Tanos
  8. Gregory Mazo
  9. Meng-Fu Bryan Tsou
  10. Wann-Neng Jane
  11. T Tony Yang
  12. Jung-Chi Liao
(2020)
Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages
eLife 9:e53580.
https://doi.org/10.7554/eLife.53580

Share this article

https://doi.org/10.7554/eLife.53580

Further reading

    1. Cell Biology
    Peipei Xu, Rui Zhang ... Wenxiang Meng
    Research Article

    The reorientation of the Golgi apparatus is crucial for cell migration and is regulated by multipolarity signals. A number of non-centrosomal microtubules anchor at the surface of the Golgi apparatus and play a vital role in the Golgi reorientation, but how the Golgi are regulated by polarity signals remains unclear. Calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) is a protein that anchors microtubules to the Golgi, a cellular organelle. Our research indicates that CAMSAP2 is dynamically localized at the Golgi during its reorientation processing. Further research shows that CAMSAP2 is potentially regulated by a polarity signaling molecule called MARK2, which interacts with CAMSAP2. We used mass spectrometry to find that MARK2 phosphorylates CAMSAP2 at serine-835, which affects its interaction with the Golgi-associated protein USO1 but not with CG-NAP or CLASPs. This interaction is critical for anchoring microtubules to the Golgi during cell migration, altering microtubule polarity distribution, and aiding Golgi reorientation. Our study reveals an important signaling pathway in Golgi reorientation during cell migration, which can provide insights for research in cancer cell migration, immune response, and targeted drug development.

    1. Cell Biology
    Sakshi Shambhavi, Sudipta Mondal ... Rajan Sankaranarayanan
    Research Article

    Diacylglycerols (DAGs) are used for metabolic purposes and are tightly regulated secondary lipid messengers in eukaryotes. DAG subspecies with different fatty-acyl chains are proposed to be involved in the activation of distinct PKC isoforms, resulting in diverse physiological outcomes. However, the molecular players and the regulatory origin for fine-tuning the PKC pathway are unknown. Here, we show that Dip2, a conserved DAG regulator across Fungi and Animalia, has emerged as a modulator of PKC signalling in yeast. Dip2 maintains the level of a specific DAG subpopulation, required for the activation of PKC-mediated cell wall integrity pathway. Interestingly, the canonical DAG-metabolism pathways, being promiscuous, are decoupled from PKC signalling. We demonstrate that these DAG subspecies are sourced from a phosphatidylinositol pool generated by the acyl-chain remodelling pathway. Furthermore, we provide insights into the intimate coevolutionary relationship between the regulator (Dip2) and the effector (PKC) of DAG-based signalling. Hence, our study underscores the establishment of Dip2-PKC axis about 1.2 billion years ago in Opisthokonta, which marks the rooting of the first specific DAG-based signalling module of eukaryotes.