Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages

  1. Weng Man Chong
  2. Won-Jing Wang
  3. Chien-Hui Lo
  4. Tzu-Yuan Chiu
  5. Ting-Jui Chang
  6. You-Pi Liu
  7. Barbara Tanos
  8. Gregory Mazo
  9. Meng-Fu Bryan Tsou
  10. Wann-Neng Jane
  11. T Tony Yang  Is a corresponding author
  12. Jung-Chi Liao  Is a corresponding author
  1. Academia Sinica, Taiwan, Republic of China
  2. National Yang-Ming University, Taiwan, Republic of China
  3. Institute of Cancer Research, United Kingdom
  4. Memorial Sloan Kettering Cancer Center, United States
  5. National Taiwan University, Taiwan, Republic of China

Abstract

Subdistal appendages (sDAPs) are centriolar elements observed proximal to the distal appendages (DAPs) in vertebrates. Despite their obvious presence, structural and functional understanding of sDAPs remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that, although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework of sDAPs to shed light on functional understanding, surprisingly revealing the coupling between DAPs and sDAPs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Weng Man Chong

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Won-Jing Wang

    Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9733-0839
  3. Chien-Hui Lo

    Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  4. Tzu-Yuan Chiu

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ting-Jui Chang

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  6. You-Pi Liu

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  7. Barbara Tanos

    Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Gregory Mazo

    Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Meng-Fu Bryan Tsou

    Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2159-8836
  10. Wann-Neng Jane

    Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  11. T Tony Yang

    Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
    For correspondence
    tonyyang@ntu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
  12. Jung-Chi Liao

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    For correspondence
    jcliao@iams.sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4323-6318

Funding

Ministry of Science and Technology, Taiwan (107-2112-M-001-037)

  • Weng Man Chong
  • Tzu-Yuan Chiu
  • Ting-Jui Chang
  • You-Pi Liu
  • T Tony Yang
  • Jung-Chi Liao

Ministry of Science and Technology, Taiwan (107-2313-B-001-009)

  • Weng Man Chong
  • Tzu-Yuan Chiu
  • Ting-Jui Chang
  • You-Pi Liu
  • T Tony Yang
  • Jung-Chi Liao

Academia Sinica (2317-1040300)

  • Weng Man Chong
  • Tzu-Yuan Chiu
  • Ting-Jui Chang
  • You-Pi Liu
  • T Tony Yang
  • Jung-Chi Liao

Ministry of Science and Technology, Taiwan (108-2313-B-010-001)

  • Won-Jing Wang

Ministry of Science and Technology, Taiwan (108-2628-B-010-007)

  • Won-Jing Wang

Ministry of Science and Technology, Taiwan (108-2638-B-010-001 -MY2)

  • Won-Jing Wang

National Institutes of Health (GM088253)

  • Meng-Fu Bryan Tsou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Chong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,573
    views
  • 746
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weng Man Chong
  2. Won-Jing Wang
  3. Chien-Hui Lo
  4. Tzu-Yuan Chiu
  5. Ting-Jui Chang
  6. You-Pi Liu
  7. Barbara Tanos
  8. Gregory Mazo
  9. Meng-Fu Bryan Tsou
  10. Wann-Neng Jane
  11. T Tony Yang
  12. Jung-Chi Liao
(2020)
Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages
eLife 9:e53580.
https://doi.org/10.7554/eLife.53580

Share this article

https://doi.org/10.7554/eLife.53580

Further reading

    1. Cell Biology
    Swastika Sur, Maggie Kerwin ... Minnie M Sarwal
    Research Article

    Understanding the unique susceptibility of the human kidney to pH dysfunction and injury in cystinosis is paramount to developing new therapies to preserve renal function. Renal proximal tubular epithelial cells (RPTECs) and fibroblasts isolated from patients with cystinosis were transcriptionally profiled. Lysosomal fractionation, immunoblotting, confocal microscopy, intracellular pH, TEM, and mitochondrial stress test were performed for validation. CRISPR, CTNS -/- RPTECs were generated. Alterations in cell stress, pH, autophagic turnover, and mitochondrial energetics highlighted key changes in the V-ATPases in patient-derived and CTNS-/- RPTECs. ATP6V0A1 was significantly downregulated in cystinosis and highly co-regulated with loss of CTNS. Correction of ATP6V0A1 rescued cell stress and mitochondrial function. Treatment of CTNS -/- RPTECs with antioxidants ATX induced ATP6V0A1 expression and improved autophagosome turnover and mitochondrial integrity. Our exploratory transcriptional and in vitro cellular and functional studies confirm that loss of Cystinosin in RPTECs, results in a reduction in ATP6V0A1 expression, with changes in intracellular pH, mitochondrial integrity, mitochondrial function, and autophagosome-lysosome clearance. The novel findings are ATP6V0A1’s role in cystinosis-associated renal pathology and among other antioxidants, ATX specifically upregulated ATP6V0A1, improved autophagosome turnover or reduced autophagy and mitochondrial integrity. This is a pilot study highlighting a novel mechanism of tubular injury in cystinosis.

    1. Cell Biology
    2. Developmental Biology
    Dilara N Anbarci, Jennifer McKey ... Blanche Capel
    Research Article

    The rete ovarii (RO) is an appendage of the ovary that has been given little attention. Although the RO appears in drawings of the ovary in early versions of Gray’s Anatomy, it disappeared from recent textbooks, and is often dismissed as a functionless vestige in the adult ovary. Using PAX8 immunostaining and confocal microscopy, we characterized the fetal development of the RO in the context of the mouse ovary. The RO consists of three distinct regions that persist in adult life, the intraovarian rete (IOR), the extraovarian rete (EOR), and the connecting rete (CR). While the cells of the IOR appear to form solid cords within the ovary, the EOR rapidly develops into a convoluted tubular epithelium ending in a distal dilated tip. Cells of the EOR are ciliated and exhibit cellular trafficking capabilities. The CR, connecting the EOR to the IOR, gradually acquires tubular epithelial characteristics by birth. Using microinjections into the distal dilated tip of the EOR, we found that luminal contents flow toward the ovary. Mass spectrometry revealed that the EOR lumen contains secreted proteins potentially important for ovarian function. We show that the cells of the EOR are closely associated with vasculature and macrophages, and are contacted by neuronal projections, consistent with a role as a sensory appendage of the ovary. The direct proximity of the RO to the ovary and its integration with the extraovarian landscape suggest that it plays an important role in ovary development and homeostasis.