Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages

  1. Weng Man Chong
  2. Won-Jing Wang
  3. Chien-Hui Lo
  4. Tzu-Yuan Chiu
  5. Ting-Jui Chang
  6. You-Pi Liu
  7. Barbara Tanos
  8. Gregory Mazo
  9. Meng-Fu Bryan Tsou
  10. Wann-Neng Jane
  11. T Tony Yang  Is a corresponding author
  12. Jung-Chi Liao  Is a corresponding author
  1. Academia Sinica, Taiwan, Republic of China
  2. National Yang-Ming University, Taiwan, Republic of China
  3. Institute of Cancer Research, United Kingdom
  4. Memorial Sloan Kettering Cancer Center, United States
  5. National Taiwan University, Taiwan, Republic of China

Abstract

Subdistal appendages (sDAPs) are centriolar elements observed proximal to the distal appendages (DAPs) in vertebrates. Despite their obvious presence, structural and functional understanding of sDAPs remains elusive. Here, by combining super-resolved localization analysis and CRISPR-Cas9 genetic perturbation, we find that, although DAPs and sDAPs are primarily responsible for distinct functions in ciliogenesis and microtubule anchoring respectively, the presence of one element actually affects the positioning of the other. Specifically, we find dual layers of both ODF2 and CEP89, where their localizations are differentially regulated by DAP and sDAP integrity. DAP depletion relaxes longitudinal occupancy of sDAP protein ninein to cover the DAP region, implying a role of DAPs in sDAP positioning. Removing sDAPs alter the distal border of centrosomal γ-tubulins, illustrating a new role of sDAPs. Together, our results provide an architectural framework of sDAPs to shed light on functional understanding, surprisingly revealing the coupling between DAPs and sDAPs.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Weng Man Chong

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  2. Won-Jing Wang

    Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9733-0839
  3. Chien-Hui Lo

    Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang-Ming University, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  4. Tzu-Yuan Chiu

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  5. Ting-Jui Chang

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  6. You-Pi Liu

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  7. Barbara Tanos

    Cancer Therapeutics, Institute of Cancer Research, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Gregory Mazo

    Dermatology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Meng-Fu Bryan Tsou

    Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2159-8836
  10. Wann-Neng Jane

    Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, Republic of China
    Competing interests
    The authors declare that no competing interests exist.
  11. T Tony Yang

    Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
    For correspondence
    tonyyang@ntu.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
  12. Jung-Chi Liao

    Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
    For correspondence
    jcliao@iams.sinica.edu.tw
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4323-6318

Funding

Ministry of Science and Technology, Taiwan (107-2112-M-001-037)

  • Weng Man Chong
  • Tzu-Yuan Chiu
  • Ting-Jui Chang
  • You-Pi Liu
  • T Tony Yang
  • Jung-Chi Liao

Ministry of Science and Technology, Taiwan (107-2313-B-001-009)

  • Weng Man Chong
  • Tzu-Yuan Chiu
  • Ting-Jui Chang
  • You-Pi Liu
  • T Tony Yang
  • Jung-Chi Liao

Academia Sinica (2317-1040300)

  • Weng Man Chong
  • Tzu-Yuan Chiu
  • Ting-Jui Chang
  • You-Pi Liu
  • T Tony Yang
  • Jung-Chi Liao

Ministry of Science and Technology, Taiwan (108-2313-B-010-001)

  • Won-Jing Wang

Ministry of Science and Technology, Taiwan (108-2628-B-010-007)

  • Won-Jing Wang

Ministry of Science and Technology, Taiwan (108-2638-B-010-001 -MY2)

  • Won-Jing Wang

National Institutes of Health (GM088253)

  • Meng-Fu Bryan Tsou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anna Akhmanova, Utrecht University, Netherlands

Publication history

  1. Received: November 13, 2019
  2. Accepted: April 2, 2020
  3. Accepted Manuscript published: April 3, 2020 (version 1)
  4. Version of Record published: April 21, 2020 (version 2)

Copyright

© 2020, Chong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,751
    Page views
  • 653
    Downloads
  • 47
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Weng Man Chong
  2. Won-Jing Wang
  3. Chien-Hui Lo
  4. Tzu-Yuan Chiu
  5. Ting-Jui Chang
  6. You-Pi Liu
  7. Barbara Tanos
  8. Gregory Mazo
  9. Meng-Fu Bryan Tsou
  10. Wann-Neng Jane
  11. T Tony Yang
  12. Jung-Chi Liao
(2020)
Super-resolution microscopy reveals coupling between mammalian centriole subdistal appendages and distal appendages
eLife 9:e53580.
https://doi.org/10.7554/eLife.53580

Further reading

    1. Cell Biology
    Emmeline Marchal-Duval, Méline Homps-Legrand ... Arnaud A Mailleux
    Research Article

    Matrix remodeling is a salient feature of idiopathic pulmonary fibrosis (IPF). Targeting cells driving matrix remodeling could be a promising avenue for IPF treatment. Analysis of transcriptomic database identified the mesenchymal transcription factor PRRX1 as upregulated in IPF. PRRX1, strongly expressed by lung fibroblasts, was regulated by a TGF-b/PGE2 balance in vitro in control and IPF human lung fibroblasts, while IPF fibroblast-derived matrix increased PRRX1 expression in a PDGFR dependent manner in control ones. PRRX1 inhibition decreased human lung fibroblast proliferation by downregulating the expression of S phase cyclins. PRRX1 inhibition also impacted TGF-β driven myofibroblastic differentiation by inhibiting SMAD2/3 phosphorylation through phosphatase PPM1A upregulation and TGFBR2 downregulation, leading to TGF-β response global decrease. Finally, targeted inhibition of Prrx1 attenuated fibrotic remodeling in vivo with intra-tracheal antisense oligonucleotides in bleomycin mouse model of lung fibrosis and ex vivo using human and mouse precision-cut lung slices. Our results identified PRRX1 as a key mesenchymal transcription factor during lung fibrogenesis.

    1. Cell Biology
    2. Neuroscience
    Meghan E Wynne, Oluwaseun Ogunbona ... Victor Faundez
    Research Article Updated

    Mitochondria influence cellular function through both cell-autonomous and non-cell autonomous mechanisms, such as production of paracrine and endocrine factors. Here, we demonstrate that mitochondrial regulation of the secretome is more extensive than previously appreciated, as both genetic and pharmacological disruption of the electron transport chain caused upregulation of the Alzheimer’s disease risk factor apolipoprotein E (APOE) and other secretome components. Indirect disruption of the electron transport chain by gene editing of SLC25A mitochondrial membrane transporters as well as direct genetic and pharmacological disruption of either complexes I, III, or the copper-containing complex IV of the electron transport chain elicited upregulation of APOE transcript, protein, and secretion, up to 49-fold. These APOE phenotypes were robustly expressed in diverse cell types and iPSC-derived human astrocytes as part of an inflammatory gene expression program. Moreover, age- and genotype-dependent decline in brain levels of respiratory complex I preceded an increase in APOE in the 5xFAD mouse model. We propose that mitochondria act as novel upstream regulators of APOE-dependent cellular processes in health and disease.