Impact of community piped water coverage on re-infection with urogenital schistosomiasis in rural South Africa
Abstract
Previously, we demonstrated that high coverage of piped water in the seven years preceding a parasitological survey was strongly predictive of Schistosomiasis haematobium infection in a nested cohort of 1,976 primary school children [1]. Here, we report on the prospective follow up of infected members of this nested cohort (N=333) for two successive rounds following treatment. Using a negative binomial regression fitted to egg count data, we found that every percentage point increase in piped water coverage was associated with 4.4% decline in intensity of re-infection (incidence rate ratio = 0.96, 95%CI: 0.93-0.98, P= 0.002) among the treated children. We therefore provide further compelling evidence in support of the scaleup of piped water as an effective control strategy against Schistosomiasis haematobium transmission.
Data availability
Data that support the findings presented in this manuscript are available from the African Health Research data repository upon request and agreeing to AHRI's terms and conditions for use. The datasets used here include homestead-level coordinates as an essential component and these data are personally identifiable. Request to access the data can be made through the AHRI's institutional website (https://www.ahri.org/research/#research-department) and by email to AHRI's data department (ITservicedesk@ahri.org).
Article and author information
Author details
Funding
National Institutes of Health
- Christopher Appleton
- Frank Tanser
Wellcome
- Frank Tanser
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Ethical approval was provided by the Biomedical Research Ethics Committee of the university of KwaZulu-Natal (reference #E165/05). Written informed consent was sought from parents or guardians of the participating children for both rounds of follow-up in 2007 and 2008 and assent obtained from the children during the follow-up surveys.
Copyright
© 2020, Mogeni et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,090
- views
-
- 107
- downloads
-
- 9
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Medicine
- Microbiology and Infectious Disease
- Epidemiology and Global Health
- Immunology and Inflammation
eLife has published articles on a wide range of infectious diseases, including COVID-19, influenza, tuberculosis, HIV/AIDS, malaria and typhoid fever.
-
- Epidemiology and Global Health
Background:
The role of circulating metabolites on child development is understudied. We investigated associations between children’s serum metabolome and early childhood development (ECD).
Methods:
Untargeted metabolomics was performed on serum samples of 5004 children aged 6–59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children’s milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥1. The interaction between significant metabolites and the child’s age was tested.
Results:
Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child’s nutritional status, diet quality, and infant age. Cresol sulfate (β=–0.07; adjusted-p <0.001), hippuric acid (β=–0.06; adjusted-p <0.001), phenylacetylglutamine (β=–0.06; adjusted-p <0.001), and trimethylamine-N-oxide (β=–0.05; adjusted-p=0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged –1 SD: β=–0.05; pP=0.01;+1 SD: β=0.05; p=0.02) and methylhistidine (–1 SD: β = - 0.04; p=0.04;+1 SD: β=0.04; p=0.03).
Conclusions:
Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.
Funding:
Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.