Structure of the AAA protein Msp1 reveals mechanism of mislocalized membrane protein extraction

  1. Lan Wang
  2. Alexander Myasnikov
  3. Xingjie Pan
  4. Peter Walter  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, San Francisco, United States
  2. University of California, San Francisco, United States

Abstract

The AAA protein Msp1 extracts mislocalized tail-anchored membrane proteins and targets them for degradation, thus maintaining proper cell organization. How Msp1 selects its substrates and firmly engages them during the energetically unfavorable extraction process remains a mystery. To address this question, we solved cryo-EM structures of Msp1-substrate complexes at near-atomic resolution. Akin to other AAA proteins, Msp1 forms hexameric spirals that translocate substrates through a central pore. A singular hydrophobic substrate recruitment site is exposed at the spiral's seam, which we propose positions the substrate for entry into the pore. There, a tight web of aromatic amino acids grips the substrate in a sequence-promiscuous, hydrophobic milieu. Elements at the intersubunit interfaces coordinate ATP hydrolysis with the subunits' positions in the spiral. We present a comprehensive model of Msp1's mechanism, which follows general architectural principles established for other AAA proteins yet specializes Msp1 for its unique role in membrane protein extraction.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the supplementary materials. The atomic models were deposited in the protein data bank under the accession codes 6PDW, 6PDY and 6PE0; the associated cryo-EM maps were deposited in the electron microscopy data bank (EMDB) under the accession codes EMD-20318, EMD-20319 and EMD-20320

The following data sets were generated

Article and author information

Author details

  1. Lan Wang

    Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8931-7201
  2. Alexander Myasnikov

    Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Xingjie Pan

    Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Peter Walter

    Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
    For correspondence
    peter@walterlab.ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6849-708X

Funding

National Institutes of Health (R01GM032384)

  • Peter Walter

National Institutes of Health (R01GM032384)

  • Lan Wang

Howard Hughes Medical Institute

  • Peter Walter

Damon Runyon Cancer Research Foundation (DRG-2312-17)

  • Lan Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Franz-Ulrich Hartl, Max Planck Institute for Biochemistry, Germany

Version history

  1. Received: November 28, 2019
  2. Accepted: January 29, 2020
  3. Accepted Manuscript published: January 30, 2020 (version 1)
  4. Version of Record published: February 13, 2020 (version 2)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,950
    views
  • 687
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lan Wang
  2. Alexander Myasnikov
  3. Xingjie Pan
  4. Peter Walter
(2020)
Structure of the AAA protein Msp1 reveals mechanism of mislocalized membrane protein extraction
eLife 9:e54031.
https://doi.org/10.7554/eLife.54031

Share this article

https://doi.org/10.7554/eLife.54031

Further reading

    1. Structural Biology and Molecular Biophysics
    Thuy TM Ngo, Bailey Liu ... Taekjip Ha
    Research Article

    The organization of nucleosomes into chromatin and their accessibility are shaped by local DNA mechanics. Conversely, nucleosome positions shape genetic variations, which may originate from mismatches during replication and chemical modification of DNA. To investigate how DNA mismatches affect the mechanical stability and the exposure of nucleosomal DNA, we used an optical trap combined with single-molecule FRET and a single-molecule FRET cyclization assay. We found that a single base-pair C-C mismatch enhances DNA bendability and nucleosome mechanical stability for the 601-nucleosome positioning sequence. An increase in force required for DNA unwrapping from the histone core is observed for single base-pair C-C mismatches placed at three tested positions: at the inner turn, at the outer turn, or at the junction of the inner and outer turn of the nucleosome. The results support a model where nucleosomal DNA accessibility is reduced by mismatches, potentially explaining the preferred accumulation of single-nucleotide substitutions in the nucleosome core and serving as the source of genetic variation during evolution and cancer progression. Mechanical stability of an intact nucleosome, that is mismatch-free, is also dependent on the species as we find that yeast nucleosomes are mechanically less stable and more symmetrical in the outer turn unwrapping compared to Xenopus nucleosomes.

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Marcel Proske, Robert Janowski ... Dierk Niessing
    Research Article

    Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.