Transcriptomics: Revisiting the genomes of herpesviruses

Combining integrative genomics and systems biology approaches has revealed new and conserved features in the genome of human herpesvirus 6.
  1. Bhupesh K Prusty  Is a corresponding author
  2. Adam W Whisnant
  1. Julius-Maximilians-Universität Würzburg, Germany

Herpesviruses cause a range of human diseases but many factors complicate the efforts made to precisely map the size and origin of RNA transcripts coded by these pathogens. For example, some mRNAs can code for more than one protein, coding sequences may overlap with each other, and the genes that are expressed may change depending on cell types or stages in the viral cycle. Moreover, the level of expression can greatly vary from gene to gene, which makes it difficult to distinguish between rare viral transcripts and other genetic products that accumulate in infected cells and during viral replication. In fact, in most herpesviruses, the majority of the genome is transcribed to some degree, yet only the most highly expressed or genomically isolated units are readily detectable.

Several new techniques have allowed researchers to bypass these problems to better annotate the genomes of herpesviruses. A tailored RNA sequencing method called cRNA-Seq, which enriches for the 5’ ends of RNA transcripts, has allowed the mapping of transcription start sites; in parallel, ribosome profiling (Ribo-Seq) has helped to highlight translational start sites. Combined, these approaches have revealed dozens to hundreds of new genes in herpesviruses such as the human cytomegalovirus (Stern-Ginossar et al., 2012) and the Kaposi’s sarcoma-associated herpesvirus (Arias et al., 2014). When paired with long-read sequencing platforms (which provide additional information about the 3’ ends of transcripts), the new methods have also led to a better understanding of a number of pathogens in the herpes family. Now, in eLife, Noam Stern-Ginossar and colleagues at the Weizmann Institute of Science and the Hebrew University Hadassah Medical School – including Yaara Finkel as first author – report new insights into human herpesvirus 6A and 6B (Finkel et al., 2020).

The results help to correct and complement previous textbook genome annotations for herpesviruses. Due to the technical limitations of the time, the exact beginnings of many transcripts and coding sequences were assigned a priori, and inclusion into published gene lists relied on rather conservative criteria. For instance, a sequence was classified as an open reading frame (the part of a genetic sequence that can potentially be translated) if it had more than 100 amino acids and started with an AUG codon. Instead, Finkel et al. demonstrate that roughly one-third of open reading frames in human herpesvirus 6A and 6B contain alternative start codons, which are also used by eukaryotes and other herpesviruses (Kearse and Wilusz, 2017; Arias et al., 2014). For instance, strains of human cytomegalovirus can have different start codons for a given gene, which may influence biological properties (Brondke et al., 2007); such questions can now be investigated in herpesvirus 6A and 6B .

Another exciting finding is the identification of hundreds of short, internal or upstream open reading frames (Figure 1). The proteins encoded by many of these sequences are likely to be too small to have direct functions. However, some of these short open reading frames are close to (or overlap with) longer coding sequences, suggesting that they may regulate translation – particularly during the later stage of viral gene expression, when homeostasis in the host cells is most disrupted. Finkel et al. observed that several of these open reading frames are also transcribed in human cytomegalovirus, indicating important conserved roles across the family of viruses that herpesvirus 6A and 6B belong to.

Taking a closer look at the genomes of human herpesviruses 6.

Finkel et al. have used a combination of techniques to reannotate the genomes of human herpesviruses 6A and 6B. They have identified new open reading frames (268 in human herpesvirus 6A and 216 in human herpesvirus 6B) and corrected the annotation of existing frames (10 in human herpesvirus 6A and 11 in human herpesvirus 6B). The figure shows how an open reading frame called U30, which codes for an important protein in both human herpesvirus 6A and 6B, was reannotated. Data from Ribo-Seq (orange) revealed that the start of the open reading frame was downstream of what was expected based on the previous annotation (black) or cRNA-Seq information (blue), leading to a new, more accurate annotation for this sequence (green).

Combining several methods that can pinpoint both translational and transcriptional start sites – as Finkel et al. did – is particularly important because modern sequencing protocols are sensitive enough to identify rare transcription events, but they cannot distinguish between ‘real’ transcriptional units and biological artifacts. Whole-genome conclusions based on one technique or method of analysis are heavily influenced by experimental noise, technical limitations and even the specific algorithm used to interpret the data. For instance, estimates of the exact number of transcriptional start sites in human cytomegalovirus vary by thousands between studies that use different methods (Stern-Ginossar et al., 2012; Parida et al., 2019); in herpes simplex virus, these numbers can vary by over six-fold (Tombácz et al., 2019; Depledge et al., 2019).

While our appreciation of the coding capacity of pathogens increases, efforts must be made to integrate newly identified gene products into already established nomenclatures. The first waves of new annotations using high-throughput techniques will probably be revised as sequencing technology and analysis techniques improve, and the results are validated in the lab. In particular, new algorithms that can better distinguish signal-to-noise values could help to identify hundreds of additional peptides in a second revision of the human cytomegalovirus genome (Erhard et al., 2018). As our ability to sequence deeper develops, multifaceted studies such as the one by Finkel et al. will provide an excellent framework to help distinguish between rare functional events and technical noise when re-examining herpesvirus genome annotations.

References

Article and author information

Author details

  1. Bhupesh K Prusty

    Bhupesh K Prusty is in the Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

    For correspondence
    bhupesh.prusty@biozentrum.uni-wuerzburg.de
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7051-4670
  2. Adam W Whisnant

    Adam W Whisnant is in the Institute for Virology and Immunobiology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2039-2809

Publication history

  1. Version of Record published:

Copyright

© 2020, Prusty and Whisnant

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 947
    views
  • 115
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bhupesh K Prusty
  2. Adam W Whisnant
(2020)
Transcriptomics: Revisiting the genomes of herpesviruses
eLife 9:e54037.
https://doi.org/10.7554/eLife.54037

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Amanda Mixon Blackwell, Yasaman Jami-Alahmadi ... Paul A Sigala
    Research Article

    Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.

    1. Ecology
    2. Microbiology and Infectious Disease
    Benedikt M Mortzfeld, Shakti K Bhattarai, Vanni Bucci
    Short Report

    Interspecies interactions involving direct competition via bacteriocin production play a vital role in shaping ecological dynamics within microbial ecosystems. For instance, the ribosomally produced siderophore bacteriocins, known as class IIb microcins, affect the colonization of host-associated pathogenic Enterobacteriaceae species. Notably, to date, only five of these antimicrobials have been identified, all derived from specific Escherichia coli and Klebsiella pneumoniae strains. We hypothesized that class IIb microcin production extends beyond these specific compounds and organisms. With a customized informatics-driven approach, screening bacterial genomes in public databases with BLAST and manual curation, we have discovered 12 previously unknown class IIb microcins in seven additional Enterobacteriaceae species, encompassing phytopathogens and environmental isolates. We introduce three novel clades of microcins (MccW, MccX, and MccZ), while also identifying eight new variants of the five known class IIb microcins. To validate their antimicrobial potential, we heterologously expressed these microcins in E. coli and demonstrated efficacy against a variety of bacterial isolates, including plant pathogens from the genera Brenneria, Gibbsiella, and Rahnella. Two newly discovered microcins exhibit activity against Gram-negative ESKAPE pathogens, i.e., Acinetobacter baumannii or Pseudomonas aeruginosa, providing the first evidence that class IIb microcins can target bacteria outside of the Enterobacteriaceae family. This study underscores that class IIb microcin genes are more prevalent in the microbial world than previously recognized and that synthetic hybrid microcins can be a viable tool to target clinically relevant drug-resistant pathogens. Our findings hold significant promise for the development of innovative engineered live biotherapeutic products tailored to combat these resilient bacteria.