OTX2 represses sister cell fate choices in the developing retina to promote photoreceptor specification

Abstract

During vertebrate retinal development, subsets of progenitor cells produce progeny in a non-stochastic manner, suggesting that these decisions are tightly regulated. However, the gene-regulatory network components that are functionally important in these progenitor cells are largely unknown. Here we identify a functional role for the OTX2 transcription factor in this process. CRISPR/Cas9 gene editing was used to produce somatic mutations of OTX2 in the chick retina and identified similar phenotypes to those observed in human patients. Single cell RNA sequencing was used to determine the functional consequences OTX2 gene editing on the population of cells derived from OTX2-expressing retinal progenitor cells. This confirmed that OTX2 is required for the generation of photoreceptors, but also for repression of specific retinal fates and alternative gene regulatory networks. These include specific subtypes of retinal ganglion and horizontal cells, suggesting that in this context, OTX2 functions to repress sister cell fate choices.

Data availability

Sequencing data have been deposited in GEO under accession code GSE142244

The following data sets were generated

Article and author information

Author details

  1. Miruna Georgina Ghinia Tegla

    Biology, The City College of New York, CUNY, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Diego F Buenaventura

    Biology, The City College of New York, CUNY, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Diana Y Kim

    Biology, The City College of New York, CUNY, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Cassandra Thakurdin

    Biology, The City College of New York, CUNY, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Kevin C Gonzalez

    Biology, The City College of New York, CUNY, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Mark M Emerson

    Biology, The City College of New York, CUNY, New York, United States
    For correspondence
    memerson@ccny.cuny.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1914-5782

Funding

National Eye Institute (R01EY024982)

  • Mark M Emerson

National Institute of General Medical Sciences (T34GM007639)

  • Kevin C Gonzalez

National Institute on Minority Health and Health Disparities (3G12MD007603)

  • Miruna Georgina Ghinia Tegla
  • Diego F Buenaventura
  • Diana Y Kim
  • Cassandra Thakurdin
  • Kevin C Gonzalez
  • Mark M Emerson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Ghinia Tegla et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,014
    views
  • 433
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Miruna Georgina Ghinia Tegla
  2. Diego F Buenaventura
  3. Diana Y Kim
  4. Cassandra Thakurdin
  5. Kevin C Gonzalez
  6. Mark M Emerson
(2020)
OTX2 represses sister cell fate choices in the developing retina to promote photoreceptor specification
eLife 9:e54279.
https://doi.org/10.7554/eLife.54279

Share this article

https://doi.org/10.7554/eLife.54279

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.