Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures

  1. Tiberiu Tesileanu  Is a corresponding author
  2. Mary M Conte
  3. John J Briguglio
  4. Ann M Hermundstad
  5. Jonathan D Victor
  6. Vijay Balasubramanian
  1. Flatiron Institute, United States
  2. Weill Cornell Medical College, United States
  3. Howard Hughes Medical Institute, United States
  4. University of Pennsylvania, United States

Abstract

Previously, in (Hermundstad et al., 2014), we showed that when sampling is limiting, the efficient coding principle leads to a 'variance is salience' hypothesis, and that this hypothesis accounts for visual sensitivity to binary image statistics. Here, using extensive new psychophysical data and image analysis, we show that this hypothesis accounts for visual sensitivity to a large set of grayscale image statistics at a striking level of detail, and also identify the limits of the prediction. We define a 66-dimensional space of local grayscale light-intensity correlations, and measure the relevance of each direction to natural scenes. The 'variance is salience' hypothesis predicts that two-point correlations are most salient, and predicts their relative salience. We tested these predictions in a texture-segregation task using un-natural, synthetic textures. As predicted, correlations beyond second order are not salient, and predicted thresholds for over 300 second-order correlations match psychophysical thresholds closely (median fractional error < 0:13).

Data availability

All the code and data necessary to reproduce the results from the manuscript are available at https://github.com/ttesileanu/TextureAnalysis.

The following previously published data sets were used

Article and author information

Author details

  1. Tiberiu Tesileanu

    Center for Computational Biology, Flatiron Institute, New York, United States
    For correspondence
    ttesileanu@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3107-3088
  2. Mary M Conte

    Brain and Mind Institute, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John J Briguglio

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ann M Hermundstad

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0377-0516
  5. Jonathan D Victor

    Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medical College, New-York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9293-0111
  6. Vijay Balasubramanian

    Department of Physics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6497-3819

Funding

US-Israel Binational Science Foundation (2011058)

  • Vijay Balasubramanian

National Eye Institute (EY07977)

  • Mary M Conte
  • Jonathan D Victor
  • Vijay Balasubramanian

Swartz Foundation

  • Tiberiu Tesileanu

Howard Hughes Medical Institute

  • John J Briguglio
  • Ann M Hermundstad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephanie Palmer, University of Chicago, United States

Ethics

Human subjects: This work was carried out with the subjects' informed consent, and in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) and the approval of the Institutional Review Board of Weill Cornell. The IRB protocol number is 0904010359.

Version history

  1. Received: December 12, 2019
  2. Accepted: July 31, 2020
  3. Accepted Manuscript published: August 3, 2020 (version 1)
  4. Version of Record published: September 16, 2020 (version 2)

Copyright

© 2020, Tesileanu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,455
    views
  • 173
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tiberiu Tesileanu
  2. Mary M Conte
  3. John J Briguglio
  4. Ann M Hermundstad
  5. Jonathan D Victor
  6. Vijay Balasubramanian
(2020)
Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures
eLife 9:e54347.
https://doi.org/10.7554/eLife.54347

Share this article

https://doi.org/10.7554/eLife.54347

Further reading

    1. Neuroscience
    John J Maurer, Alexandra Lin ... Shinjae Chung
    Research Article

    Rapid eye movement sleep (REMs) is characterized by activated electroencephalogram (EEG) and muscle atonia, accompanied by vivid dreams. REMs is homeostatically regulated, ensuring that any loss of REMs is compensated by a subsequent increase in its amount. However, the neural mechanisms underlying the homeostatic control of REMs are largely unknown. Here, we show that GABAergic neurons in the preoptic area of the hypothalamus projecting to the tuberomammillary nucleus (POAGAD2→TMN neurons) are crucial for the homeostatic regulation of REMs in mice. POAGAD2→TMN neurons are most active during REMs, and inhibiting them specifically decreases REMs. REMs restriction leads to an increased number and amplitude of calcium transients in POAGAD2→TMN neurons, reflecting the accumulation of REMs pressure. Inhibiting POAGAD2→TMN neurons during REMs restriction blocked the subsequent rebound of REMs. Our findings reveal a hypothalamic circuit whose activity mirrors the buildup of homeostatic REMs pressure during restriction and that is required for the ensuing rebound in REMs.

    1. Neuroscience
    Zilu Liang, Simeng Wu ... Chao Liu
    Research Article

    People form impressions about others during daily social encounters and infer personality traits from others' behaviors. Such trait inference is thought to rely on two universal dimensions: competence and warmth. These two dimensions can be used to construct a ‘social cognitive map’ organizing massive information obtained from social encounters efficiently. Originating from spatial cognition, the neural codes supporting the representation and navigation of spatial cognitive maps have been widely studied. Recent studies suggest similar neural mechanism subserves the map-like architecture in social cognition as well. Here we investigated how spatial codes operate beyond the physical environment and support the representation and navigation of social cognitive map. We designed a social value space defined by two dimensions of competence and warmth. Behaviorally, participants were able to navigate to a learned location from random starting locations in this abstract social space. At the neural level, we identified the representation of distance in the precuneus, fusiform gyrus, and middle occipital gyrus. We also found partial evidence of grid-like representation patterns in the medial prefrontal cortex and entorhinal cortex. Moreover, the intensity of grid-like response scaled with the performance of navigating in social space and social avoidance trait scores. Our findings suggest a neurocognitive mechanism by which social information can be organized into a structured representation, namely cognitive map and its relevance to social well-being.