1. Neuroscience
  2. Physics of Living Systems
Download icon

Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures

  1. Tiberiu Tesileanu  Is a corresponding author
  2. Mary M Conte
  3. John J Briguglio
  4. Ann M Hermundstad
  5. Jonathan D Victor
  6. Vijay Balasubramanian
  1. Flatiron Institute, United States
  2. Weill Cornell Medical College, United States
  3. Howard Hughes Medical Institute, United States
  4. University of Pennsylvania, United States
Research Advance
  • Cited 0
  • Views 740
  • Annotations
Cite this article as: eLife 2020;9:e54347 doi: 10.7554/eLife.54347

Abstract

Previously, in (Hermundstad et al., 2014), we showed that when sampling is limiting, the efficient coding principle leads to a 'variance is salience' hypothesis, and that this hypothesis accounts for visual sensitivity to binary image statistics. Here, using extensive new psychophysical data and image analysis, we show that this hypothesis accounts for visual sensitivity to a large set of grayscale image statistics at a striking level of detail, and also identify the limits of the prediction. We define a 66-dimensional space of local grayscale light-intensity correlations, and measure the relevance of each direction to natural scenes. The 'variance is salience' hypothesis predicts that two-point correlations are most salient, and predicts their relative salience. We tested these predictions in a texture-segregation task using un-natural, synthetic textures. As predicted, correlations beyond second order are not salient, and predicted thresholds for over 300 second-order correlations match psychophysical thresholds closely (median fractional error < 0:13).

Article and author information

Author details

  1. Tiberiu Tesileanu

    Center for Computational Biology, Flatiron Institute, New York, United States
    For correspondence
    ttesileanu@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3107-3088
  2. Mary M Conte

    Brain and Mind Institute, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John J Briguglio

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ann M Hermundstad

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0377-0516
  5. Jonathan D Victor

    Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medical College, New-York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9293-0111
  6. Vijay Balasubramanian

    Department of Physics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6497-3819

Funding

US-Israel Binational Science Foundation (2011058)

  • Vijay Balasubramanian

National Eye Institute (EY07977)

  • Mary M Conte
  • Jonathan D Victor
  • Vijay Balasubramanian

Swartz Foundation

  • Tiberiu Tesileanu

Howard Hughes Medical Institute

  • John J Briguglio
  • Ann M Hermundstad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This work was carried out with the subjects' informed consent, and in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) and the approval of the Institutional Review Board of Weill Cornell. The IRB protocol number is 0904010359.

Reviewing Editor

  1. Stephanie Palmer, University of Chicago, United States

Publication history

  1. Received: December 12, 2019
  2. Accepted: July 31, 2020
  3. Accepted Manuscript published: August 3, 2020 (version 1)
  4. Version of Record published: September 16, 2020 (version 2)

Copyright

© 2020, Tesileanu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 740
    Page views
  • 105
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Andrea Alamia et al.
    Research Article Updated

    Psychedelic drugs are potent modulators of conscious states and therefore powerful tools for investigating their neurobiology. N,N, Dimethyltryptamine (DMT) can rapidly induce an extremely immersive state of consciousness characterized by vivid and elaborate visual imagery. Here, we investigated the electrophysiological correlates of the DMT-induced altered state from a pool of participants receiving DMT and (separately) placebo (saline) while instructed to keep their eyes closed. Consistent with our hypotheses, results revealed a spatio-temporal pattern of cortical activation (i.e. travelling waves) similar to that elicited by visual stimulation. Moreover, the typical top-down alpha-band rhythms of closed-eyes rest were significantly decreased, while the bottom-up forward wave was significantly increased. These results support a recent model proposing that psychedelics reduce the ‘precision-weighting of priors’, thus altering the balance of top-down versus bottom-up information passing. The robust hypothesis-confirming nature of these findings imply the discovery of an important mechanistic principle underpinning psychedelic-induced altered states.

    1. Neuroscience
    Amanda M Zimmet et al.
    Research Article Updated

    It is thought that the brain does not simply react to sensory feedback, but rather uses an internal model of the body to predict the consequences of motor commands before sensory feedback arrives. Time-delayed sensory feedback can then be used to correct for the unexpected—perturbations, motor noise, or a moving target. The cerebellum has been implicated in this predictive control process. Here, we show that the feedback gain in patients with cerebellar ataxia matches that of healthy subjects, but that patients exhibit substantially more phase lag. This difference is captured by a computational model incorporating a Smith predictor in healthy subjects that is missing in patients, supporting the predictive role of the cerebellum in feedback control. Lastly, we improve cerebellar patients’ movement control by altering (phase advancing) the visual feedback they receive from their own self movement in a simplified virtual reality setup.