Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures

  1. Tiberiu Tesileanu  Is a corresponding author
  2. Mary M Conte
  3. John J Briguglio
  4. Ann M Hermundstad
  5. Jonathan D Victor
  6. Vijay Balasubramanian
  1. Flatiron Institute, United States
  2. Weill Cornell Medical College, United States
  3. Howard Hughes Medical Institute, United States
  4. University of Pennsylvania, United States

Abstract

Previously, in (Hermundstad et al., 2014), we showed that when sampling is limiting, the efficient coding principle leads to a 'variance is salience' hypothesis, and that this hypothesis accounts for visual sensitivity to binary image statistics. Here, using extensive new psychophysical data and image analysis, we show that this hypothesis accounts for visual sensitivity to a large set of grayscale image statistics at a striking level of detail, and also identify the limits of the prediction. We define a 66-dimensional space of local grayscale light-intensity correlations, and measure the relevance of each direction to natural scenes. The 'variance is salience' hypothesis predicts that two-point correlations are most salient, and predicts their relative salience. We tested these predictions in a texture-segregation task using un-natural, synthetic textures. As predicted, correlations beyond second order are not salient, and predicted thresholds for over 300 second-order correlations match psychophysical thresholds closely (median fractional error < 0:13).

Data availability

All the code and data necessary to reproduce the results from the manuscript are available at https://github.com/ttesileanu/TextureAnalysis.

The following previously published data sets were used

Article and author information

Author details

  1. Tiberiu Tesileanu

    Center for Computational Biology, Flatiron Institute, New York, United States
    For correspondence
    ttesileanu@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3107-3088
  2. Mary M Conte

    Brain and Mind Institute, Weill Cornell Medical College, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John J Briguglio

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ann M Hermundstad

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0377-0516
  5. Jonathan D Victor

    Brain and Mind Research Institute and Department of Neurology, Weill Cornell Medical College, New-York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9293-0111
  6. Vijay Balasubramanian

    Department of Physics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6497-3819

Funding

US-Israel Binational Science Foundation (2011058)

  • Vijay Balasubramanian

National Eye Institute (EY07977)

  • Mary M Conte
  • Jonathan D Victor
  • Vijay Balasubramanian

Swartz Foundation

  • Tiberiu Tesileanu

Howard Hughes Medical Institute

  • John J Briguglio
  • Ann M Hermundstad

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This work was carried out with the subjects' informed consent, and in accordance with the Code of Ethics of the World Medical Association (Declaration of Helsinki) and the approval of the Institutional Review Board of Weill Cornell. The IRB protocol number is 0904010359.

Copyright

© 2020, Tesileanu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,497
    views
  • 176
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tiberiu Tesileanu
  2. Mary M Conte
  3. John J Briguglio
  4. Ann M Hermundstad
  5. Jonathan D Victor
  6. Vijay Balasubramanian
(2020)
Efficient coding of natural scene statistics predicts discrimination thresholds for grayscale textures
eLife 9:e54347.
https://doi.org/10.7554/eLife.54347

Share this article

https://doi.org/10.7554/eLife.54347

Further reading

    1. Neuroscience
    Robert A Bruce, Matthew Weber ... Kumar Narayanan
    Research Article

    The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway. We found that D2-MSNs and D1-MSNs exhibited distinct dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a four-parameter drift-diffusion computational model in which MSN ensemble activity represented the accumulation of temporal evidence. This model predicted that disrupting either D2-MSNs or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased interval timing response times. Pharmacologically disrupting D2-MSNs or D1-MSNs also changed MSN dynamics and degraded trial-by-trial temporal decoding. Together, our findings demonstrate that D2-MSNs and D1-MSNs had opposing dynamics yet played complementary cognitive roles, implying that striatal direct and indirect pathways work together to shape temporal control of action. These data provide novel insight into basal ganglia cognitive operations beyond movement and have implications for human striatal diseases and therapies targeting striatal pathways.

    1. Neuroscience
    Claire Meissner-Bernard, Friedemann Zenke, Rainer W Friedrich
    Research Article

    Biological memory networks are thought to store information by experience-dependent changes in the synaptic connectivity between assemblies of neurons. Recent models suggest that these assemblies contain both excitatory and inhibitory neurons (E/I assemblies), resulting in co-tuning and precise balance of excitation and inhibition. To understand computational consequences of E/I assemblies under biologically realistic constraints we built a spiking network model based on experimental data from telencephalic area Dp of adult zebrafish, a precisely balanced recurrent network homologous to piriform cortex. We found that E/I assemblies stabilized firing rate distributions compared to networks with excitatory assemblies and global inhibition. Unlike classical memory models, networks with E/I assemblies did not show discrete attractor dynamics. Rather, responses to learned inputs were locally constrained onto manifolds that ‘focused’ activity into neuronal subspaces. The covariance structure of these manifolds supported pattern classification when information was retrieved from selected neuronal subsets. Networks with E/I assemblies therefore transformed the geometry of neuronal coding space, resulting in continuous representations that reflected both relatedness of inputs and an individual’s experience. Such continuous representations enable fast pattern classification, can support continual learning, and may provide a basis for higher-order learning and cognitive computations.