1. Neuroscience
Download icon

A Matlab-based toolbox for characterizing behavior of rodents engaged in string-pulling

Tools and Resources
  • Cited 0
  • Views 501
  • Annotations
Cite this article as: eLife 2020;9:e54540 doi: 10.7554/eLife.54540

Abstract

String-pulling by rodents is a behavior in which animals make rhythmical body, head, and bilateral forearm as well as skilled hand movements to spontaneously reel in a string. Typical analysis includes kinematic assessment of hand movements done by manually annotating frames. Here, we describe a Matlab® based software that allows whole-body motion characterization using optical flow estimation, descriptive statistics, principal component, and independent component analyses as well as temporal measures of Fano factor, entropy, and Higuchi fractal dimension. Based on image-segmentation and heuristic algorithms for object tracking, the software also allows tracking of body, ears, nose, and forehands for estimation of kinematic parameters such as body length, body angle, head roll, head yaw, head pitch, and path and speed of hand movements. The utility of the task and software is demonstrated by characterizing postural and hand kinematic differences in string-pulling behavior of two strains of mice, C57BL/6 and Swiss Webster.

Article and author information

Author details

  1. Samsoon Inayat

    Neuroscience, University of Lethbridge, Lethbridge, Canada
    For correspondence
    samsoon.inayat@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1966-7967
  2. Surjeet Singh

    Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Arashk Ghasroddashti

    Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Qandeel Qandeel

    Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Pramuka Egodage

    Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Ian Q Whishaw

    Neuroscience, University of Lethbridge, Lethbridge, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Majid H Mohajerani

    Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Canada
    For correspondence
    mohajerani@uleth.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0964-2977

Funding

Canadian Institutes of Health Research (390930)

  • Majid H Mohajerani

Natural Sciences and Engineering Research Council of Canada (40352)

  • Majid H Mohajerani

Alberta Innovates (43568)

  • Majid H Mohajerani

Alberta Alzheimer Research Program Grant (PAZ15010)

  • Majid H Mohajerani

Alberta Alzheimer Research Program Grant (PAZ17010)

  • Majid H Mohajerani

Alzheimer Society of Canada (43674)

  • Majid H Mohajerani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in strict accordance with the Canadian Council of Animal Care and were approved by the University of Lethbridge Animal Welfare Committee (Protocol 1812).

Reviewing Editor

  1. David Kleinfeld, University of California, San Diego, United States

Publication history

  1. Received: December 18, 2019
  2. Accepted: June 26, 2020
  3. Accepted Manuscript published: June 26, 2020 (version 1)

Copyright

© 2020, Inayat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 501
    Page views
  • 102
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    2. Physics of Living Systems
    Joanne C Gordon et al.
    Research Article Updated
    1. Neuroscience
    Julia Erb et al.
    Research Article