Coverage-dependent bias creates the appearance of binary splicing in single cells

  1. Carlos F Buen Abad Najar
  2. Nir Yosef  Is a corresponding author
  3. Liana F Lareau  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

Single cell RNA sequencing provides powerful insight into the factors that determine each cell's unique identity. Previous studies led to the surprising observation that alternative splicing among single cells is highly variable and follows a bimodal pattern: a given cell consistently produces either one or the other isoform for a particular splicing choice, with few cells producing both isoforms. Here we show that this pattern arises almost entirely from technical limitations. We analyze alternative splicing in human and mouse single cell RNA-seq datasets, and model them with a probabilistic simulator. Our simulations show that low gene expression and low capture efficiency distort the observed distribution of isoforms. This gives the appearance of binary splicing outcomes, even when the underlying reality is consistent with more than one isoform per cell. We show that accounting for the true amount of information recovered can produce biologically meaningful measurements of splicing in single cells.

Data availability

All sequencing data reanalyzed in this study were acquired from GEO.

The following previously published data sets were used

Article and author information

Author details

  1. Carlos F Buen Abad Najar

    Center for Computational Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nir Yosef

    Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    niryosef@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9004-1225
  3. Liana F Lareau

    Department of Bioengineering, University of California, Berkeley, Berkeley, United States
    For correspondence
    lareau@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3223-3426

Funding

UC MEXUS-Conacyt (Doctoral Fellowship)

  • Carlos F Buen Abad Najar

Chan Zuckerberg Biohub

  • Nir Yosef

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. L Stirling Churchman, Harvard Medical School, United States

Version history

  1. Received: December 19, 2019
  2. Accepted: June 28, 2020
  3. Accepted Manuscript published: June 29, 2020 (version 1)
  4. Version of Record published: September 17, 2020 (version 2)

Copyright

© 2020, Buen Abad Najar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,327
    Page views
  • 550
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carlos F Buen Abad Najar
  2. Nir Yosef
  3. Liana F Lareau
(2020)
Coverage-dependent bias creates the appearance of binary splicing in single cells
eLife 9:e54603.
https://doi.org/10.7554/eLife.54603

Share this article

https://doi.org/10.7554/eLife.54603

Further reading

    1. Chromosomes and Gene Expression
    Rachel A Johnston, Katherine A Aracena ... Jenny Tung
    Research Advance

    Previously, we showed that a massively parallel reporter assay, mSTARR-seq, could be used to simultaneously test for both enhancer-like activity and DNA methylation-dependent enhancer activity for millions of loci in a single experiment (Lea et al., 2018). Here, we apply mSTARR-seq to query nearly the entire human genome, including almost all CpG sites profiled either on the commonly used Illumina Infinium MethylationEPIC array or via reduced representation bisulfite sequencing. We show that fragments containing these sites are enriched for regulatory capacity, and that methylation-dependent regulatory activity is in turn sensitive to the cellular environment. In particular, regulatory responses to interferon alpha (IFNA) stimulation are strongly attenuated by methyl marks, indicating widespread DNA methylation-environment interactions. In agreement, methylation-dependent responses to IFNA identified via mSTARR-seq predict methylation-dependent transcriptional responses to challenge with influenza virus in human macrophages. Our observations support the idea that pre-existing DNA methylation patterns can influence the response to subsequent environmental exposures—one of the tenets of biological embedding. However, we also find that, on average, sites previously associated with early life adversity are not more likely to functionally influence gene regulation than expected by chance.

    1. Chromosomes and Gene Expression
    Masaaki Sokabe, Christopher S Fraser
    Insight

    A new in vitro system called Rec-Seq sheds light on how mRNA molecules compete for the machinery that translates their genetic sequence into proteins.