Coverage-dependent bias creates the appearance of binary splicing in single cells

  1. Carlos F Buen Abad Najar
  2. Nir Yosef  Is a corresponding author
  3. Liana F Lareau  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

Single cell RNA sequencing provides powerful insight into the factors that determine each cell's unique identity. Previous studies led to the surprising observation that alternative splicing among single cells is highly variable and follows a bimodal pattern: a given cell consistently produces either one or the other isoform for a particular splicing choice, with few cells producing both isoforms. Here we show that this pattern arises almost entirely from technical limitations. We analyze alternative splicing in human and mouse single cell RNA-seq datasets, and model them with a probabilistic simulator. Our simulations show that low gene expression and low capture efficiency distort the observed distribution of isoforms. This gives the appearance of binary splicing outcomes, even when the underlying reality is consistent with more than one isoform per cell. We show that accounting for the true amount of information recovered can produce biologically meaningful measurements of splicing in single cells.

Data availability

All sequencing data reanalyzed in this study were acquired from GEO.

The following previously published data sets were used

Article and author information

Author details

  1. Carlos F Buen Abad Najar

    Center for Computational Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Nir Yosef

    Department of Electrical Engineering and Computer Science and the Center for Computational Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    niryosef@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9004-1225
  3. Liana F Lareau

    Department of Bioengineering, University of California, Berkeley, Berkeley, United States
    For correspondence
    lareau@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3223-3426

Funding

UC MEXUS-Conacyt (Doctoral Fellowship)

  • Carlos F Buen Abad Najar

Chan Zuckerberg Biohub

  • Nir Yosef

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. L Stirling Churchman, Harvard Medical School, United States

Version history

  1. Received: December 19, 2019
  2. Accepted: June 28, 2020
  3. Accepted Manuscript published: June 29, 2020 (version 1)
  4. Version of Record published: September 17, 2020 (version 2)

Copyright

© 2020, Buen Abad Najar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,369
    Page views
  • 553
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Carlos F Buen Abad Najar
  2. Nir Yosef
  3. Liana F Lareau
(2020)
Coverage-dependent bias creates the appearance of binary splicing in single cells
eLife 9:e54603.
https://doi.org/10.7554/eLife.54603

Share this article

https://doi.org/10.7554/eLife.54603

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.