Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function

  1. Susanne Gerndt
  2. Cheng-Chang Chen
  3. Yu-Kai Chao
  4. Yu Yuan
  5. Sandra Burgstaller
  6. Anna Scotto Rosato
  7. Einar Krogsaeter
  8. Nicole Urban
  9. Katharina Jacob
  10. Ong Nam Phuong Nguyen
  11. Meghan T Miller
  12. Marco Keller
  13. Angelika M Vollmar
  14. Thomas Gudermann
  15. Susanna Zierler
  16. Johann Schredelseker
  17. Michael Schaefer
  18. Martin Biel
  19. Roland Malli
  20. Christian Wahl-Schott  Is a corresponding author
  21. Franz Bracher  Is a corresponding author
  22. Sandip Patel  Is a corresponding author
  23. Christian Grimm  Is a corresponding author
  1. Ludwig Maximilian University of Munich, Germany
  2. UCL London, United Kingdom
  3. Medical University of Graz, Austria
  4. University of Leipzig, Germany
  5. Roche, Switzerland
  6. MHH Hannover, Germany
  7. University College London, United Kingdom

Abstract

Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009; Guo et al., 2017; Jha et al., 2014; Ruas et al., 2015; Wang et al., 2012), depends on the activating ligand. A high throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+-mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Susanne Gerndt

    Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Cheng-Chang Chen

    Pharmacology, Ludwig Maximilian University of Munich, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1282-4026
  3. Yu-Kai Chao

    Walther-Straub-Institute of Pharmacology and Toxicology, LM-University Munich, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1202-2448
  4. Yu Yuan

    Biosciences, UCL London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Sandra Burgstaller

    Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Anna Scotto Rosato

    Medicine, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Einar Krogsaeter

    Medicine, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8232-5498
  8. Nicole Urban

    Pharmacology/Medicine, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Katharina Jacob

    Medicine, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ong Nam Phuong Nguyen

    Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Meghan T Miller

    HTS, Roche, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Marco Keller

    Pharmacy, Ludwig Maximilian University of Munich, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Angelika M Vollmar

    Pharmacy, Ludwig Maximilian University of Munich, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Thomas Gudermann

    Medicine, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Susanna Zierler

    Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4684-0385
  16. Johann Schredelseker

    Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6657-0466
  17. Michael Schaefer

    Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Martin Biel

    Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  19. Roland Malli

    Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6327-8729
  20. Christian Wahl-Schott

    Medicine, MHH Hannover, Hannover, Germany
    For correspondence
    wahl-schott.christian@mh-hannover.de
    Competing interests
    The authors declare that no competing interests exist.
  21. Franz Bracher

    Pharmacy, Ludwig Maximilian University of Munich, München, Germany
    For correspondence
    franz.bracher@cup.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
  22. Sandip Patel

    Cell and Developmental Biology, University College London, London, United Kingdom
    For correspondence
    patel.s@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  23. Christian Grimm

    Department of Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
    For correspondence
    Christian.Grimm@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0177-5559

Funding

Mucolipidosis IV Foundation (MDBR-17-120- ML4)

  • Christian Grimm

Deutsche Forschungsgemeinschaft (SFB/TRR152 P04)

  • Christian Grimm

Deutsche Forschungsgemeinschaft (SFB/TRR152 P06)

  • Christian Wahl-Schott

Deutsche Forschungsgemeinschaft (SFB/TRR152 P12)

  • Martin Biel

Deutsche Forschungsgemeinschaft (BR 1034/7-1)

  • Franz Bracher

Biotechnology and Biological Sciences Research Council (BB/N01524X/1)

  • Sandip Patel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Bavarian Government and the European Union. All of the animals were handled according to approved institutional animal care protocols of the University of Munich. The protocol was approved by the Bavarian Government (AZ55.2-1-54-2532-170-17).

Copyright

© 2020, Gerndt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,699
    views
  • 980
    downloads
  • 127
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susanne Gerndt
  2. Cheng-Chang Chen
  3. Yu-Kai Chao
  4. Yu Yuan
  5. Sandra Burgstaller
  6. Anna Scotto Rosato
  7. Einar Krogsaeter
  8. Nicole Urban
  9. Katharina Jacob
  10. Ong Nam Phuong Nguyen
  11. Meghan T Miller
  12. Marco Keller
  13. Angelika M Vollmar
  14. Thomas Gudermann
  15. Susanna Zierler
  16. Johann Schredelseker
  17. Michael Schaefer
  18. Martin Biel
  19. Roland Malli
  20. Christian Wahl-Schott
  21. Franz Bracher
  22. Sandip Patel
  23. Christian Grimm
(2020)
Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function
eLife 9:e54712.
https://doi.org/10.7554/eLife.54712

Share this article

https://doi.org/10.7554/eLife.54712

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Assmaa Elsheikh, Camden M Driggers ... Show-Ling Shyng
    Research Article

    Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking-impaired CHI is hindered by high affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.

    1. Biochemistry and Chemical Biology
    Vladimir Khayenko, Cihan Makbul ... Hans Michael Maric
    Research Article

    The hepatitis B virus (HBV) infection is a major global health problem, with chronic infection leading to liver complications and high death toll. Current treatments, such as nucleos(t)ide analogs and interferon-α, effectively suppress viral replication but rarely cure the infection. To address this, new antivirals targeting different components of the HBV molecular machinery are being developed. Here we investigated the hepatitis B core protein (HBc) that forms the viral capsids and plays a vital role in the HBV life cycle. We explored two distinct binding pockets on the HBV capsid: the central hydrophobic pocket of HBc-dimers and the pocket at the tips of capsid spikes. We synthesized a geranyl dimer that binds to the central pocket with micromolar affinity, and dimeric peptides that bind the spike-tip pocket with sub-micromolar affinity. Cryo-electron microscopy further confirmed the binding of peptide dimers to the capsid spike tips and their capsid-aggregating properties. Finally, we show that the peptide dimers induce HBc aggregation in vitro and in living cells. Our findings highlight two tractable sites within the HBV capsid and provide an alternative strategy to affect HBV capsids.