Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function

  1. Susanne Gerndt
  2. Cheng-Chang Chen
  3. Yu-Kai Chao
  4. Yu Yuan
  5. Sandra Burgstaller
  6. Anna Scotto Rosato
  7. Einar Krogsaeter
  8. Nicole Urban
  9. Katharina Jacob
  10. Ong Nam Phuong Nguyen
  11. Meghan T Miller
  12. Marco Keller
  13. Angelika M Vollmar
  14. Thomas Gudermann
  15. Susanna Zierler
  16. Johann Schredelseker
  17. Michael Schaefer
  18. Martin Biel
  19. Roland Malli
  20. Christian Wahl-Schott  Is a corresponding author
  21. Franz Bracher  Is a corresponding author
  22. Sandip Patel  Is a corresponding author
  23. Christian Grimm  Is a corresponding author
  1. Ludwig Maximilian University of Munich, Germany
  2. UCL London, United Kingdom
  3. Medical University of Graz, Austria
  4. University of Leipzig, Germany
  5. Roche, Switzerland
  6. MHH Hannover, Germany
  7. University College London, United Kingdom

Abstract

Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009; Guo et al., 2017; Jha et al., 2014; Ruas et al., 2015; Wang et al., 2012), depends on the activating ligand. A high throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+-mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Susanne Gerndt

    Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Cheng-Chang Chen

    Pharmacology, Ludwig Maximilian University of Munich, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1282-4026
  3. Yu-Kai Chao

    Walther-Straub-Institute of Pharmacology and Toxicology, LM-University Munich, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1202-2448
  4. Yu Yuan

    Biosciences, UCL London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Sandra Burgstaller

    Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
  6. Anna Scotto Rosato

    Medicine, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Einar Krogsaeter

    Medicine, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8232-5498
  8. Nicole Urban

    Pharmacology/Medicine, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Katharina Jacob

    Medicine, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Ong Nam Phuong Nguyen

    Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Meghan T Miller

    HTS, Roche, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  12. Marco Keller

    Pharmacy, Ludwig Maximilian University of Munich, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Angelika M Vollmar

    Pharmacy, Ludwig Maximilian University of Munich, München, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Thomas Gudermann

    Medicine, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  15. Susanna Zierler

    Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4684-0385
  16. Johann Schredelseker

    Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6657-0466
  17. Michael Schaefer

    Rudolf-Boehm-Institute for Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  18. Martin Biel

    Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  19. Roland Malli

    Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6327-8729
  20. Christian Wahl-Schott

    Medicine, MHH Hannover, Hannover, Germany
    For correspondence
    wahl-schott.christian@mh-hannover.de
    Competing interests
    The authors declare that no competing interests exist.
  21. Franz Bracher

    Pharmacy, Ludwig Maximilian University of Munich, München, Germany
    For correspondence
    franz.bracher@cup.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
  22. Sandip Patel

    Cell and Developmental Biology, University College London, London, United Kingdom
    For correspondence
    patel.s@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  23. Christian Grimm

    Department of Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
    For correspondence
    Christian.Grimm@med.uni-muenchen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0177-5559

Funding

Mucolipidosis IV Foundation (MDBR-17-120- ML4)

  • Christian Grimm

Deutsche Forschungsgemeinschaft (SFB/TRR152 P04)

  • Christian Grimm

Deutsche Forschungsgemeinschaft (SFB/TRR152 P06)

  • Christian Wahl-Schott

Deutsche Forschungsgemeinschaft (SFB/TRR152 P12)

  • Martin Biel

Deutsche Forschungsgemeinschaft (BR 1034/7-1)

  • Franz Bracher

Biotechnology and Biological Sciences Research Council (BB/N01524X/1)

  • Sandip Patel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Richard S Lewis, Stanford University School of Medicine, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Bavarian Government and the European Union. All of the animals were handled according to approved institutional animal care protocols of the University of Munich. The protocol was approved by the Bavarian Government (AZ55.2-1-54-2532-170-17).

Version history

  1. Received: December 23, 2019
  2. Accepted: March 12, 2020
  3. Accepted Manuscript published: March 13, 2020 (version 1)
  4. Accepted Manuscript updated: March 16, 2020 (version 2)
  5. Version of Record published: March 31, 2020 (version 3)
  6. Version of Record updated: April 6, 2020 (version 4)

Copyright

© 2020, Gerndt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,915
    Page views
  • 863
    Downloads
  • 106
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Susanne Gerndt
  2. Cheng-Chang Chen
  3. Yu-Kai Chao
  4. Yu Yuan
  5. Sandra Burgstaller
  6. Anna Scotto Rosato
  7. Einar Krogsaeter
  8. Nicole Urban
  9. Katharina Jacob
  10. Ong Nam Phuong Nguyen
  11. Meghan T Miller
  12. Marco Keller
  13. Angelika M Vollmar
  14. Thomas Gudermann
  15. Susanna Zierler
  16. Johann Schredelseker
  17. Michael Schaefer
  18. Martin Biel
  19. Roland Malli
  20. Christian Wahl-Schott
  21. Franz Bracher
  22. Sandip Patel
  23. Christian Grimm
(2020)
Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function
eLife 9:e54712.
https://doi.org/10.7554/eLife.54712

Share this article

https://doi.org/10.7554/eLife.54712

Further reading

    1. Biochemistry and Chemical Biology
    Jake W Anderson, David Vaisar ... Natalie G Ahn
    Research Article

    Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named ‘L’ and ‘R,’ where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

    1. Biochemistry and Chemical Biology
    Anne E Hultgren, Nicole MF Patras, Jenna Hicks
    Feature Article

    Organizations that fund research are keen to ensure that their grant selection processes are fair and equitable for all applicants. In 2020, the Arnold and Mabel Beckman Foundation introduced blinding to the first stage of the process used to review applications for Beckman Young Investigator (BYI) awards: applicants were instructed to blind the technical proposal in their initial Letter of Intent by omitting their name, gender, gender-identifying pronouns, and institutional information. Here we examine the impact of this change by comparing the data on gender and institutional prestige of the applicants in the first four years of the new policy (BYI award years 2021–2024) with data on the last four years of the old policy (2017–2020). We find that under the new policy, the distribution of applicants invited to submit a full application shifted from those affiliated with institutions regarded as more prestigious to those outside of this group, and that this trend continued through to the final program awards. We did not find evidence of a shift in the distribution of applicants with respect to gender.